論文の概要: A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks
- arxiv url: http://arxiv.org/abs/2009.13264v1
- Date: Wed, 23 Sep 2020 01:38:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 15:43:26.134568
- Title: A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks
- Title(参考訳): 多層ニューラルネットワークにおける量子パーセプトロントレーニングの導出自由化法
- Authors: Tariq M. Khan and Antonio Robles-Kelly
- Abstract要約: 量子パーセプトロンに基づく多層ニューラルネットワークのグラデーションフリー・アプローチ
我々は測定可能な演算子を用いて、マルコフプロセスと整合した方法でネットワークの状態を定義する。
- 参考スコア(独自算出の注目度): 2.962453125262748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a gradient-free approach for training multi-layered
neural networks based upon quantum perceptrons. Here, we depart from the
classical perceptron and the elemental operations on quantum bits, i.e. qubits,
so as to formulate the problem in terms of quantum perceptrons. We then make
use of measurable operators to define the states of the network in a manner
consistent with a Markov process. This yields a Dirac-Von Neumann formulation
consistent with quantum mechanics. Moreover, the formulation presented here has
the advantage of having a computational efficiency devoid of the number of
layers in the network. This, paired with the natural efficiency of quantum
computing, can imply a significant improvement in efficiency, particularly for
deep networks. Finally, but not least, the developments here are quite general
in nature since the approach presented here can also be used for
quantum-inspired neural networks implemented on conventional computers.
- Abstract(参考訳): 本稿では,量子パーセプトロンに基づく多層ニューラルネットワークの学習のための勾配なし手法を提案する。
ここでは、古典的なパーセプトロンと量子ビット上の要素演算、すなわち量子ビットから出発し、量子パーセプトロンの観点で問題を定式化する。
次に、測定可能な演算子を用いて、マルコフプロセスと整合した方法でネットワークの状態を定義する。
これにより、ディラック・フォン・ノイマンの定式化は量子力学と一致する。
さらに,本稿の定式化は,ネットワーク内の層数に依存しない計算効率の利点を有する。
これは量子コンピューティングの自然な効率と相まって、特にディープネットワークの効率が大幅に向上することを意味する。
最後に、ここでの展開は、従来のコンピュータに実装された量子インスパイアされたニューラルネットワークにも使用できるため、非常に一般的なものである。
関連論文リスト
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Tensor-network-assisted variational quantum algorithm [3.5995214208007944]
本稿では,テンソルネットワークを用いた変分量子アルゴリズムのフレームワークを提案する。
提案手法は浅量子回路を用いた従来の手法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-12-20T16:59:54Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
本稿では,ノイズの多い中間規模量子デバイス上で動作可能な,実現可能な純粋量子アーキテクチャを提案する。
本研究は、純粋量子完全畳み込みネットワークのトレーニングを成功させ、それをハイブリッドソリューションと比較することで利点を論じるものである。
論文 参考訳(メタデータ) (2021-10-05T01:06:54Z) - An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection [5.609958919699706]
本稿では,量子特徴抽出器の階層構造を学習するために,量子古典的畳み込みネットワークのための単純な教師なし手法を提案する。
提案手法の主な貢献は、量子回路アンサッツにおける量子特性の差を最大化するために、$K$-meansクラスタリングを使用することである。
論文 参考訳(メタデータ) (2021-07-17T03:16:59Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Solving Quantum Master Equations with Deep Quantum Neural Networks [0.0]
我々は、オープンな量子多体系の混合状態を表現するために、普遍的な量子計算が可能なディープ量子フィードフォワードニューラルネットワークを使用する。
量子ネットワークの特別な構造を所有するこのアプローチは、バレン高原の欠如など、多くの注目すべき特徴を享受している。
論文 参考訳(メタデータ) (2020-08-12T18:00:08Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。