From Imitation to Exploration: End-to-end Autonomous Driving based on World Model
- URL: http://arxiv.org/abs/2410.02253v2
- Date: Sun, 20 Apr 2025 06:05:58 GMT
- Title: From Imitation to Exploration: End-to-end Autonomous Driving based on World Model
- Authors: Yueyuan Li, Mingyang Jiang, Songan Zhang, Wei Yuan, Chunxiang Wang, Ming Yang,
- Abstract summary: RAMBLE is an end-to-end world model-based RL method for driving decision-making.<n>It can handle complex and dynamic traffic scenarios.<n>It achieves state-of-the-art performance in route completion rate on the CARLA Leaderboard 1.0 and completes all 38 scenarios on the CARLA Leaderboard 2.0.
- Score: 24.578178308010912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, end-to-end autonomous driving architectures have gained increasing attention due to their advantage in avoiding error accumulation. Most existing end-to-end autonomous driving methods are based on Imitation Learning (IL), which can quickly derive driving strategies by mimicking expert behaviors. However, IL often struggles to handle scenarios outside the training dataset, especially in high-dynamic and interaction-intensive traffic environments. In contrast, Reinforcement Learning (RL)-based driving models can optimize driving decisions through interaction with the environment, improving adaptability and robustness. To leverage the strengths of both IL and RL, we propose RAMBLE, an end-to-end world model-based RL method for driving decision-making. RAMBLE extracts environmental context information from RGB images and LiDAR data through an asymmetrical variational autoencoder. A transformer-based architecture is then used to capture the dynamic transitions of traffic participants. Next, an actor-critic structure reinforcement learning algorithm is applied to derive driving strategies based on the latent features of the current state and dynamics. To accelerate policy convergence and ensure stable training, we introduce a training scheme that initializes the policy network using IL, and employs KL loss and soft update mechanisms to smoothly transition the model from IL to RL. RAMBLE achieves state-of-the-art performance in route completion rate on the CARLA Leaderboard 1.0 and completes all 38 scenarios on the CARLA Leaderboard 2.0, demonstrating its effectiveness in handling complex and dynamic traffic scenarios. The model will be open-sourced upon paper acceptance at https://github.com/SCP-CN-001/ramble to support further research and development in autonomous driving.
Related papers
- TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.
A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.
Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.
Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Continual Learning for Adaptable Car-Following in Dynamic Traffic Environments [16.587883982785]
The continual evolution of autonomous driving technology requires car-following models that can adapt to diverse and dynamic traffic environments.
Traditional learning-based models often suffer from performance degradation when encountering unseen traffic patterns due to a lack of continual learning capabilities.
This paper proposes a novel car-following model based on continual learning that addresses this limitation.
arXiv Detail & Related papers (2024-07-17T06:32:52Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
Connected and autonomous vehicles have the potential to minimize energy consumption.
Existing deterministic and methods created to solve the eco-driving problem generally suffer from high computational and memory requirements.
This work proposes a hierarchical multi-horizon optimization framework implemented via a neural network.
arXiv Detail & Related papers (2023-10-16T23:13:51Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Bi-Level Optimization Augmented with Conditional Variational Autoencoder
for Autonomous Driving in Dense Traffic [0.9281671380673306]
This paper presents a parameterized bi-level optimization that jointly computes the optimal behavioural decisions and the resulting trajectory.
Our approach runs in real-time using a custom GPU-accelerated batch, and a Variational Autoencoder learnt warm-start strategy.
Our approach outperforms state-of-the-art model predictive control and RL approaches in terms of collision rate while being competitive in driving efficiency.
arXiv Detail & Related papers (2022-12-05T12:56:42Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
This paper presents a self-evolving decision-making system based on the Integrated Decision and Control (IDC)
An RL algorithm called constrained mixed policy gradient (CMPG) is proposed to consistently upgrade the driving policy of the IDC.
Experiment results show that boosting by data, the system can achieve better driving ability over model-based methods.
arXiv Detail & Related papers (2022-10-19T14:58:41Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - GINK: Graph-based Interaction-aware Kinodynamic Planning via
Reinforcement Learning for Autonomous Driving [10.782043595405831]
There are many challenges in applying deep reinforcement learning (D) to autonomous driving in a structured environment such as an urban area.
In this paper, we suggest a new framework that effectively combines graph-based intention representation and reinforcement learning for dynamic planning.
The experiments show the state-of-the-art performance of our approach compared to the existing baselines.
arXiv Detail & Related papers (2022-06-03T10:37:25Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning [1.1339580074756188]
Offline reinforcement learning (RL) provides a framework for learning decision-making from offline data.
Self-driving vehicles (SDV) learn a policy, which potentially even outperforms the behavior in the sub-optimal data set.
This motivates the use of model-based offline RL approaches, which leverage planning.
arXiv Detail & Related papers (2021-11-22T10:37:52Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - An End-to-end Deep Reinforcement Learning Approach for the Long-term
Short-term Planning on the Frenet Space [0.0]
This paper presents a novel end-to-end continuous deep reinforcement learning approach towards autonomous cars' decision-making and motion planning.
For the first time, we define both states and action spaces on the Frenet space to make the driving behavior less variant to the road curvatures.
The algorithm generates continuoustemporal trajectories on the Frenet frame for the feedback controller to track.
arXiv Detail & Related papers (2020-11-26T02:40:07Z) - Planning on the fast lane: Learning to interact using attention
mechanisms in path integral inverse reinforcement learning [20.435909887810165]
General-purpose trajectory planning algorithms for automated driving utilize complex reward functions.
Deep learning approaches have been successfully applied to predict local situation-dependent reward functions.
We present a neural network architecture that uses a policy attention mechanism to generate a low-dimensional context vector.
arXiv Detail & Related papers (2020-07-11T15:25:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.