論文の概要: Adaptive Priority-based Conflict Resolution of IoT Services
- arxiv url: http://arxiv.org/abs/2107.08348v1
- Date: Sun, 18 Jul 2021 02:41:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 23:23:54.396034
- Title: Adaptive Priority-based Conflict Resolution of IoT Services
- Title(参考訳): 適応プライオリティに基づくIoTサービスの競合解決
- Authors: Dipankar Chaki and Athman Bouguettaya
- Abstract要約: マルチレジデントスマートホームにおけるIoTサービスのための新しいコンフリクト解決フレームワークを提案する。
住民の文脈的要因を考慮した適応的優先順位モデルを開発した。
提案手法の有効性を示すために,実世界のデータセットに関する一連の実験を行った。
- 参考スコア(独自算出の注目度): 0.571097144710995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel conflict resolution framework for IoT services in
multi-resident smart homes. An adaptive priority model is developed considering
the residents' contextual factors (e.g., age, illness, impairment). The
proposed priority model is designed using the concept of the analytic hierarchy
process. A set of experiments on real-world datasets are conducted to show the
efficiency of the proposed approach.
- Abstract(参考訳): マルチレジデントスマートホームにおけるIoTサービスのための新しいコンフリクト解決フレームワークを提案する。
住民の状況要因(年齢、病気、障害など)を考慮した適応優先度モデルを開発した。
提案する優先度モデルは,解析階層プロセスの概念を用いて設計する。
提案手法の有効性を示すために,実世界のデータセットに関する一連の実験を行った。
関連論文リスト
- Differentiation of Multi-objective Data-driven Decision Pipeline [34.577809430781144]
実世界のシナリオは、しばしば多目的データ駆動最適化問題を含む。
従来の2段階の手法では、機械学習モデルを用いて問題係数を推定し、続いて予測された最適化問題に取り組むためにソルバを呼び出す。
近年の取り組みは、下流最適化問題から導かれる意思決定損失を用いた予測モデルのエンドツーエンドトレーニングに重点を置いている。
論文 参考訳(メタデータ) (2024-06-02T15:42:03Z) - Position: Foundation Agents as the Paradigm Shift for Decision Making [24.555816843983003]
我々は,エージェントの学習パラダイムの変革的変化として,基礎エージェントの構築を提唱する。
我々は,大規模な対話型データ収集や生成から自己指導型事前学習,適応に至るまで,基礎エージェントのロードマップを定めている。
論文 参考訳(メタデータ) (2024-05-27T09:54:50Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Constrained Environment Optimization for Prioritized Multi-Agent
Navigation [11.473177123332281]
本稿では,システムレベルの最適化問題において,環境を決定変数として考えることを目的とする。
本稿では,非優先順位付け・優先度付けされた環境最適化の新たな問題を提案する。
完全性を確保しつつ環境が変化しうる条件を, 形式的証明を通じて示す。
論文 参考訳(メタデータ) (2023-05-18T18:55:06Z) - Variational Model Perturbation for Source-Free Domain Adaptation [64.98560348412518]
確率的枠組みにおける変分ベイズ推定によるモデルパラメータの摂動を導入する。
本研究では,ベイズニューラルネットワークの学習と理論的関連性を実証し,目的領域に対する摂動モデルの一般化可能性を示す。
論文 参考訳(メタデータ) (2022-10-19T08:41:19Z) - Dynamic Conflict Resolution of IoT Services in Smart Homes [0.571097144710995]
マルチレジデントスマートホームにおけるIoTサービスのための新しいコンフリクト解決フレームワークを提案する。
提案手法は,時間的近接戦略に基づく選好抽出モデルを用いている。
行列因数分解に基づく手法を用いて選好集約モデルを設計する。
論文 参考訳(メタデータ) (2021-10-13T23:57:35Z) - Weakly supervised cross-domain alignment with optimal transport [102.8572398001639]
画像オブジェクトとテキストシーケンス間のクロスドメインアライメントは多くの視覚言語タスクの鍵となる。
本稿では,画像とテキスト間の微粒な意味的類似点の同定と最適化のための新しいアプローチについて検討する。
論文 参考訳(メタデータ) (2020-08-14T22:48:36Z) - Fine-grained Conflict Detection of IoT Services [0.571097144710995]
マルチレジデントスマートホームにおけるIoTサービス間の競合を検出する新しいフレームワークを提案する。
IoTサービスの機能的および非機能的特性を考慮した、きめ細かい競合モデルが提案されている。
我々は時間的近接に基づく新しいアルゴリズムを用いて競合を検出する。
論文 参考訳(メタデータ) (2020-07-23T11:15:57Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Topology-aware Differential Privacy for Decentralized Image
Classification [81.2202290003513]
Top-DPは、分散画像分類システムの差分プライバシー保護を最適化するための新しいソリューションである。
我々は、分散化された通信トポロジのユニークな特徴を活用し、ノイズスケールを小さくし、モデルのユーザビリティを向上させる。
論文 参考訳(メタデータ) (2020-06-14T06:42:21Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。