Vector optomechanical entanglement
- URL: http://arxiv.org/abs/2107.08384v2
- Date: Sun, 24 Oct 2021 03:23:49 GMT
- Title: Vector optomechanical entanglement
- Authors: Ying Li, Ya-Feng Jiao, Jing-Xue Liu, Adam Miranowicz, Yun-Lan Zuo,
Le-Man Kuang, and Hui Jing
- Abstract summary: We show how to achieve a coherent switch of optomechanical entanglement in a polarized-light-driven cavity system.
We show that by tuning the polarizations of the driving field, the effective optomechanical coupling can be well controlled.
- Score: 3.2490374596286378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The polarizations of optical fields, besides field intensities, provide more
degrees of freedom to manipulate coherent light-matter interactions. Here we
propose how to achieve a coherent switch of optomechanical entanglement in a
polarized-light-driven cavity system. We show that by tuning the polarizations
of the driving field, the effective optomechanical coupling can be well
controlled and, as a result, quantum entanglement between the mechanical
oscillator and the optical transverse electric (TE) mode can be coherently and
reversibly switched to that between the same phonon mode and the optical
transverse magnetic (TM) mode. This ability of switching optomechanical
entanglement with such a vectorial device can be important for building a
quantum network being capable of efficient quantum information interchanges
between processing nodes and flying photons.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Parametric Amplification of an Optomechanical Quantum Interconnect [0.0]
Connecting superconducting qubits to optical fiber necessitates the conversion of microwave photons to optical photons.
Modern experimental demonstrations exhibit strong coupling between a microwave resonator and an optical cavity mediated through phononic modes.
We propose a theoretical framework for time-dependent control of the driving lasers based on the input-output formalism of quantum optics.
arXiv Detail & Related papers (2022-02-24T18:48:58Z) - Single-mode input squeezing and tripartite entanglement in three-mode
ponderomotive optomechanics simulations [0.0]
This article proposes a new scheme in which two single-mode squeezed light fields are injected into an optomechanical cavity.
We demonstrate through our numerical simulations that the quantum entanglement can be substantially enhanced with the careful selection of squeezing strength and squeezing angle of the two quadrature squeezed light fields.
arXiv Detail & Related papers (2021-07-15T00:25:59Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - A versatile quantum simulator for coupled oscillators using a 1D chain
of atoms trapped near an optical nanofiber [0.0]
transversely confined propagating light modes of a nano-photonic optical waveguide or nanofiber can mediate effectively infinite-range forces.
We show that for a linear chain of particles trapped within the waveguide's evanescent field, transverse illumination with a suitable set of laser frequencies should allow the implementation of a coupled-oscillator quantum simulator.
arXiv Detail & Related papers (2021-05-07T13:42:01Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.