論文の概要: Early-Phase Performance-Driven Design using Generative Models
- arxiv url: http://arxiv.org/abs/2107.08572v1
- Date: Mon, 19 Jul 2021 01:25:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-20 15:16:37.954135
- Title: Early-Phase Performance-Driven Design using Generative Models
- Title(参考訳): 生成モデルを用いた早期性能駆動設計
- Authors: Spyridon Ampanavos, Ali Malkawi
- Abstract要約: 本研究では,3次元モデリング環境において直接対話を行うことのできる,性能駆動型幾何生成手法を提案する。
この方法は機械学習技術を使って生成モデルをオフラインでトレーニングする。
生成モデルの潜在空間をナビゲートすることにより、所望の特性を持つ測地を迅速に生成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current performance-driven building design methods are not widely adopted
outside the research field for several reasons that make them difficult to
integrate into a typical design process. In the early design phase, in
particular, the time-intensity and the cognitive load associated with
optimization and form parametrization are incompatible with design exploration,
which requires quick iteration. This research introduces a novel method for
performance-driven geometry generation that can afford interaction directly in
the 3d modeling environment, eliminating the need for explicit parametrization,
and is multiple orders faster than the equivalent form optimization. The method
uses Machine Learning techniques to train a generative model offline. The
generative model learns a distribution of optimal performing geometries and
their simulation contexts based on a dataset that addresses the performance(s)
of interest. By navigating the generative model's latent space, geometries with
the desired characteristics can be quickly generated. A case study is
presented, demonstrating the generation of a synthetic dataset and the use of a
Variational Autoencoder (VAE) as a generative model for geometries with optimal
solar gain. The results show that the VAE-generated geometries perform on
average at least as well as the optimized ones, suggesting that the introduced
method shows a feasible path towards more intuitive and interactive early-phase
performance-driven design assistance.
- Abstract(参考訳): 現在のパフォーマンス駆動設計手法は、典型的な設計プロセスへの統合が難しいいくつかの理由から、研究分野以外では広く採用されていない。
初期の設計段階では、特に、最適化とフォームパラメトリゼーションに関連する時間強度と認知負荷は、迅速なイテレーションを必要とする設計探索と相容れない。
本研究では,3次元モデリング環境において直接の相互作用を可能とし,明示的なパラメトリゼーションの必要性を排除し,等価な形状最適化よりも高速な性能駆動幾何生成手法を提案する。
この方法は機械学習技術を使って生成モデルをオフラインでトレーニングする。
生成モデルは、関心のあるパフォーマンス(s)に対処するデータセットに基づいて、最適な実行ジオメトリとそのシミュレーションコンテキストの分布を学習する。
生成モデルの潜在空間をナビゲートすることで、所望の特性を持つジオメトリを迅速に生成することができる。
ケーススタディでは、合成データセットの生成と変分オートエンコーダ(VAE)を最適なソーラーゲインを持つ測地線の生成モデルとして用いることを実証した。
その結果,VAE生成したジオメトリは,少なくとも最適化されたジオメトリと同様に平均的に動作し,より直感的でインタラクティブな早期段階の性能駆動設計支援への道のりが示唆された。
関連論文リスト
- Physics-Informed Geometric Operators to Support Surrogate, Dimension Reduction and Generative Models for Engineering Design [38.00713966087315]
本研究では,代用/分別モデルのトレーニングに供される幾何データを強化するための物理インフォームド幾何演算子(GO)のセットを提案する。
GOは形状の微分的および積分的性質を利用して、高レベルの固有幾何学的情報と物理を訓練に使用する特徴ベクトルに注入する。
論文 参考訳(メタデータ) (2024-07-10T12:50:43Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - Generative VS non-Generative Models in Engineering Shape Optimization [0.3749861135832073]
設計空間構築における生成モデルと非生成モデルの有効性と効率を比較した。
非生成的モデルは、生成的モデルと比較して、無効な設計がほとんどあるいは著しく少ないロバストな潜在空間を生成する。
論文 参考訳(メタデータ) (2024-02-13T15:45:20Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
本稿では,拡散モデルのサンプリング軌跡と従来の物理法に基づく最適化軌跡との整合性を示す学習フレームワークを提案する。
提案手法では,高コストプリプロセッシングや外部サロゲートモデル,ラベル付きデータの追加を必要とせずに,実用的で高性能な設計を2段階で生成することができる。
この結果から, TAは分布内構成における最先端の深層生成モデルより優れ, 推論計算コストを半減することがわかった。
論文 参考訳(メタデータ) (2023-05-29T09:16:07Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - Diffusing the Optimal Topology: A Generative Optimization Approach [6.375982344506753]
トポロジ最適化は、システム性能を最大化しながら制約セットを満たす最良の設計を見つけようとしている。
SIMPのような従来の反復最適化手法は計算コストがかかり、ローカルのミニマに留まることがある。
本研究では、SIMPのような古典最適化を深い生成モデルによって生成されるトポロジの精製機構として統合する生成最適化手法を提案する。
論文 参考訳(メタデータ) (2023-03-17T03:47:10Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
深層生成モデルは、生命科学における逆問題に対する一般的な機械学習ベースのアプローチとして登場した。
これらの問題は、データ分布の学習に加えて、興味のある複数の特性を満たす新しい設計をサンプリングする必要があることが多い。
論文 参考訳(メタデータ) (2022-10-19T19:04:45Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - Generative Design by Reinforcement Learning: Enhancing the Diversity of
Topology Optimization Designs [5.8010446129208155]
本研究では、トポロジ設計の多様性を最大化する報酬関数を備えた強化学習に基づく生成設計プロセスを提案する。
RLをベースとした生成設計は,GPUを完全自動で活用することにより,短時間で多数の多様な設計を生成できることを示す。
論文 参考訳(メタデータ) (2020-08-17T06:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。