論文の概要: Physics-Informed Geometric Operators to Support Surrogate, Dimension Reduction and Generative Models for Engineering Design
- arxiv url: http://arxiv.org/abs/2407.07611v1
- Date: Wed, 10 Jul 2024 12:50:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:41:55.745045
- Title: Physics-Informed Geometric Operators to Support Surrogate, Dimension Reduction and Generative Models for Engineering Design
- Title(参考訳): 工学設計のためのサロゲート・次元減少・生成モデルを支援する物理インフォーマル幾何演算子
- Authors: Shahroz Khan, Zahid Masood, Muhammad Usama, Konstantinos Kostas, Panagiotis Kaklis, Wei, Chen,
- Abstract要約: 本研究では,代用/分別モデルのトレーニングに供される幾何データを強化するための物理インフォームド幾何演算子(GO)のセットを提案する。
GOは形状の微分的および積分的性質を利用して、高レベルの固有幾何学的情報と物理を訓練に使用する特徴ベクトルに注入する。
- 参考スコア(独自算出の注目度): 38.00713966087315
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we propose a set of physics-informed geometric operators (GOs) to enrich the geometric data provided for training surrogate/discriminative models, dimension reduction, and generative models, typically employed for performance prediction, dimension reduction, and creating data-driven parameterisations, respectively. However, as both the input and output streams of these models consist of low-level shape representations, they often fail to capture shape characteristics essential for performance analyses. Therefore, the proposed GOs exploit the differential and integral properties of shapes--accessed through Fourier descriptors, curvature integrals, geometric moments, and their invariants--to infuse high-level intrinsic geometric information and physics into the feature vector used for training, even when employing simple model architectures or low-level parametric descriptions. We showed that for surrogate modelling, along with the inclusion of the notion of physics, GOs enact regularisation to reduce over-fitting and enhance generalisation to new, unseen designs. Furthermore, through extensive experimentation, we demonstrate that for dimension reduction and generative models, incorporating the proposed GOs enriches the training data with compact global and local geometric features. This significantly enhances the quality of the resulting latent space, thereby facilitating the generation of valid and diverse designs. Lastly, we also show that GOs can enable learning parametric sensitivities to a great extent. Consequently, these enhancements accelerate the convergence rate of shape optimisers towards optimal solutions.
- Abstract(参考訳): そこで本研究では,物理インフォームド幾何演算子(GO)を用いて,代理・識別モデル,次元縮小モデル,生成モデルをトレーニングするための幾何データを統合することを提案する。
しかしながら、これらのモデルの入力ストリームと出力ストリームはいずれも低レベルな形状表現で構成されているため、性能解析に不可欠な形状特性を捉えることができないことが多い。
そこで,提案したGOは,単純なモデルアーキテクチャや低レベルのパラメトリック記述を用いた場合であっても,フーリエ記述子,曲率積分,幾何モーメント,およびそれらの不変量を通じて,高レベルの固有幾何情報や物理を訓練に使用する特徴ベクトルに注入する。
シュロゲートモデリングでは,物理の概念を含むとともに,GOが正規化を制定し,過度な適合を減らし,新しい未知の設計への一般化を促進させることを示した。
さらに,広汎な実験により,次元の縮小と生成モデルに対して,提案したGOを組み込むことで,コンパクトな大域的および局所的な幾何学的特徴を持つトレーニングデータを豊かにすることができることを示した。
これにより、結果として生じる潜在空間の質が大幅に向上し、有効かつ多様な設計の創出が容易になる。
最後に、GOがパラメトリック感性(parametric sensivity)をある程度学べることも示している。
その結果, 最適解に対する形状最適化器の収束速度が向上した。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - (Deep) Generative Geodesics [57.635187092922976]
2つのデータポイント間の類似性を評価するために,新しい測定基準を導入する。
我々の計量は、生成距離と生成測地学の概念的定義に繋がる。
彼らの近似は、穏やかな条件下で真の値に収束することが証明されている。
論文 参考訳(メタデータ) (2024-07-15T21:14:02Z) - Bayesian Mesh Optimization for Graph Neural Networks to Enhance Engineering Performance Prediction [1.6574413179773761]
工学設計において、サロゲートモデルは計算コストのかかるシミュレーションを置き換えるために広く使われている。
本稿では3次元ディープラーニングに基づく代理モデルのためのベイズグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々のフレームワークはベイズ最適化によってメッシュ要素の最適サイズを決定し、その結果、高精度なサロゲートモデルが得られる。
論文 参考訳(メタデータ) (2024-06-04T06:27:48Z) - Generative VS non-Generative Models in Engineering Shape Optimization [0.3749861135832073]
設計空間構築における生成モデルと非生成モデルの有効性と効率を比較した。
非生成的モデルは、生成的モデルと比較して、無効な設計がほとんどあるいは著しく少ないロバストな潜在空間を生成する。
論文 参考訳(メタデータ) (2024-02-13T15:45:20Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Graph Neural Network Based Surrogate Model of Physics Simulations for
Geometry Design [0.20315704654772412]
物理シミュレーションのための高速サロゲートモデルとしてグラフニューラルネットワーク(GNN)を開発した。
ノードレベルとグラフレベルの両方で柔軟に予測できるエンコーダ・プロセッサ・デコーダ型アーキテクチャを利用する。
提案したGNNベースサロゲートモデルの性能を2つの例に示す。
論文 参考訳(メタデータ) (2023-02-01T16:23:29Z) - Early-Phase Performance-Driven Design using Generative Models [0.0]
本研究では,3次元モデリング環境において直接対話を行うことのできる,性能駆動型幾何生成手法を提案する。
この方法は機械学習技術を使って生成モデルをオフラインでトレーニングする。
生成モデルの潜在空間をナビゲートすることにより、所望の特性を持つ測地を迅速に生成することができる。
論文 参考訳(メタデータ) (2021-07-19T01:25:11Z) - A Compact Spectral Descriptor for Shape Deformations [0.8268443804509721]
本研究では, 応力下での塑性変形挙動のパラメータ化手法を提案する。
既存のパラメータ化は計算解析を比較的単純な変形に制限する。
本稿では,スペクトルメッシュ処理に基づく変形挙動のコンパクト記述子を導出する手法を提案する。
論文 参考訳(メタデータ) (2020-03-10T10:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。