Double Similarity Distillation for Semantic Image Segmentation
- URL: http://arxiv.org/abs/2107.08591v1
- Date: Mon, 19 Jul 2021 02:45:13 GMT
- Title: Double Similarity Distillation for Semantic Image Segmentation
- Authors: Yingchao Feng, Xian Sun, Wenhui Diao, Jihao Li, Xin Gao
- Abstract summary: We propose a knowledge distillation framework called double similarity distillation (DSD) to improve the classification accuracy of all existing compact networks.
Specifically, we propose a pixel-wise similarity distillation (PSD) module that utilizes residual attention maps to capture more detailed spatial dependencies.
Considering the differences in characteristics between semantic segmentation task and other computer vision tasks, we propose a category-wise similarity distillation (CSD) module.
- Score: 18.397968199629215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The balance between high accuracy and high speed has always been a
challenging task in semantic image segmentation. Compact segmentation networks
are more widely used in the case of limited resources, while their performances
are constrained. In this paper, motivated by the residual learning and global
aggregation, we propose a simple yet general and effective knowledge
distillation framework called double similarity distillation (DSD) to improve
the classification accuracy of all existing compact networks by capturing the
similarity knowledge in pixel and category dimensions, respectively.
Specifically, we propose a pixel-wise similarity distillation (PSD) module that
utilizes residual attention maps to capture more detailed spatial dependencies
across multiple layers. Compared with exiting methods, the PSD module greatly
reduces the amount of calculation and is easy to expand. Furthermore,
considering the differences in characteristics between semantic segmentation
task and other computer vision tasks, we propose a category-wise similarity
distillation (CSD) module, which can help the compact segmentation network
strengthen the global category correlation by constructing the correlation
matrix. Combining these two modules, DSD framework has no extra parameters and
only a minimal increase in FLOPs. Extensive experiments on four challenging
datasets, including Cityscapes, CamVid, ADE20K, and Pascal VOC 2012, show that
DSD outperforms current state-of-the-art methods, proving its effectiveness and
generality. The code and models will be publicly available.
Related papers
- Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
This paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks.
MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization.
MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations.
arXiv Detail & Related papers (2025-01-18T11:57:20Z) - UMSPU: Universal Multi-Size Phase Unwrapping via Mutual Self-Distillation and Adaptive Boosting Ensemble Segmenters [5.555733402087228]
We propose a mutual self-distillation mechanism and adaptive boosting ensemble segmenters to construct a universal multi-size phase unwrapping network (UMSPU)
Experimental results show that UMSPU overcomes image size limitations, achieving high precision across image sizes ranging from 256*256 to 2048*2048 (an 8 times increase)
arXiv Detail & Related papers (2024-12-07T08:38:29Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - P-MSDiff: Parallel Multi-Scale Diffusion for Remote Sensing Image Segmentation [8.46409964236009]
Diffusion models and multi-scale features are essential components in semantic segmentation tasks.
We propose a new model for semantic segmentation known as the diffusion model with parallel multi-scale branches.
Our model demonstrates superior performance based on the J1 metric on both the UAVid and Vaihingen Building datasets.
arXiv Detail & Related papers (2024-05-30T19:40:08Z) - Multi-scale Unified Network for Image Classification [33.560003528712414]
CNNs face notable challenges in performance and computational efficiency when dealing with real-world, multi-scale image inputs.
We propose Multi-scale Unified Network (MUSN) consisting of multi-scales, a unified network, and scale-invariant constraint.
MUSN yields an accuracy increase up to 44.53% and diminishes FLOPs by 7.01-16.13% in multi-scale scenarios.
arXiv Detail & Related papers (2024-03-27T06:40:26Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
High-resolution remote sensing (HRS) semantic segmentation extracts key objects from high-resolution coverage areas.
objects of the same category within HRS images show significant differences in scale and shape across diverse geographical environments.
We propose a High-resolution remote sensing network (Hi-ResNet) with efficient network structure designs.
arXiv Detail & Related papers (2023-05-22T03:58:25Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
This paper presents a Self-supervised Low-Rank Network ( SLRNet) for single-stage weakly supervised semantic segmentation (WSSS) and semi-supervised semantic segmentation (SSSS)
SLRNet uses cross-view self-supervision, that is, it simultaneously predicts several attentive LR representations from different views of an image to learn precise pseudo-labels.
Experiments on the Pascal VOC 2012, COCO, and L2ID datasets demonstrate that our SLRNet outperforms both state-of-the-art WSSS and SSSS methods with a variety of different settings.
arXiv Detail & Related papers (2022-03-19T09:19:55Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
We propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations.
We introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism.
arXiv Detail & Related papers (2020-01-09T07:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.