論文の概要: Long-term series forecasting with Query Selector -- efficient model of
sparse attention
- arxiv url: http://arxiv.org/abs/2107.08687v1
- Date: Mon, 19 Jul 2021 08:46:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-20 14:50:09.240123
- Title: Long-term series forecasting with Query Selector -- efficient model of
sparse attention
- Title(参考訳): クエリセレクタによる長期連続予測 --スパースアテンションの効率的なモデル
- Authors: Jacek Klimek, Jakub Klimek, Witold Kraskiewicz, Mateusz Topolewski
- Abstract要約: 本稿では,スパースアテンション行列に対する効率的な決定論的アルゴリズムであるクエリセレクタを提案する。
実験の結果,ETTデータセット上での最先端の成果が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various modifications of TRANSFORMER were recently used to solve time-series
forecasting problem. We propose Query Selector - an efficient, deterministic
algorithm for sparse attention matrix. Experiments show it achieves
state-of-the art results on ETT data set.
- Abstract(参考訳): 時系列予測問題を解くために, Transformer の様々な改良が最近行われた。
本稿では,スパースアテンション行列に対する効率的な決定論的アルゴリズムであるクエリセレクタを提案する。
実験の結果,ETTデータセット上での最先端の成果が得られた。
関連論文リスト
- StreamEnsemble: Predictive Queries over Spatiotemporal Streaming Data [0.8437187555622164]
本稿では,時間的(ST)データ分布上の予測クエリに対する新しいアプローチであるStreamEnemblesを提案する。
実験により,本手法は従来のアンサンブル手法や単一モデル手法よりも精度と時間で優れていたことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-30T23:50:16Z) - RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms [0.393259574660092]
RHiOTSは、階層的な時系列予測モデルとアルゴリズムを実世界のデータセット上で堅牢性を評価するように設計されている。
RHiOTSは、複雑な多次元ロバストネス評価結果を直感的で容易に解釈可能なビジュアルに変換する革新的な可視化コンポーネントを組み込んでいる。
従来の統計的手法は、変換効果が非常に破壊的である場合を除き、最先端のディープラーニングアルゴリズムよりも頑健であることを示す。
論文 参考訳(メタデータ) (2024-08-06T18:52:15Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
本稿では,特徴抽出とターゲット予測の観点から,問題の完全な解決法を提案する。
抽出のために,半適応グラフを含む効率的な時間的符号化抽出器を設計し,十分な時間的情報を取得する。
予測のために、異なる間隔間の相関を強化するためにカスケードデ予測器(CDP)を提案する。
論文 参考訳(メタデータ) (2023-05-25T13:00:46Z) - Fast Feature Selection with Fairness Constraints [49.142308856826396]
モデル構築における最適特徴の選択に関する基礎的問題について検討する。
この問題は、greedyアルゴリズムの変種を使用しても、大規模なデータセットで計算的に困難である。
適応クエリモデルは,最近提案された非モジュラー関数に対する直交整合探索のより高速なパラダイムに拡張する。
提案アルゴリズムは、適応型クエリモデルにおいて指数関数的に高速な並列実行を実現する。
論文 参考訳(メタデータ) (2022-02-28T12:26:47Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
トランスフォーマーベースのモデルは、自己アテンションモジュールの二次空間と時間的複雑さのために、長いシーケンスを処理するのに効率的ではない。
我々はLinformerとInformerを提案し、低次元投影と行選択により2次複雑性を線形(モジュラー対数因子)に還元する。
理論的解析に基づいて,Skeinformerを提案することにより,自己注意の促進と,自己注意への行列近似の精度の向上を図ることができる。
論文 参考訳(メタデータ) (2021-12-10T06:58:05Z) - Rethinking Transformer-based Set Prediction for Object Detection [57.7208561353529]
実験の結果,提案手法は元のDETRよりもはるかに高速に収束するだけでなく,検出精度の点でDTRや他のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2020-11-21T21:59:42Z) - Supervised Feature Subset Selection and Feature Ranking for Multivariate
Time Series without Feature Extraction [78.84356269545157]
MTS分類のための教師付き特徴ランキングと特徴サブセット選択アルゴリズムを導入する。
MTSの既存の教師なし特徴選択アルゴリズムとは異なり、我々の手法は時系列から一次元特徴ベクトルを生成するために特徴抽出ステップを必要としない。
論文 参考訳(メタデータ) (2020-05-01T07:46:29Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
本稿では,モデル選択の課題を解決するために,新しいベイズ最適化(BO)アルゴリズムを提案する。
結果として得られる複数のブラックボックス関数の最適化問題を協調的かつ効率的に解くために,ブラックボックス関数間の潜在的な相関を利用する。
我々は、シーケンス予測のための段階的モデル選択(SMS)の問題を初めて定式化し、この目的のために効率的な共同学習アルゴリズムを設計し、実証する。
論文 参考訳(メタデータ) (2020-01-12T09:42:19Z) - Time-Varying Graph Learning with Constraints on Graph Temporal Variation [46.218671952531324]
時間変動ネットワークの時間変動のスパース性を制限する凸最適化問題において2つの正規化項を導入する。
最適化問題を効率的に解くために計算可能アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-10T08:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。