Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning
- URL: http://arxiv.org/abs/2411.02983v1
- Date: Tue, 05 Nov 2024 10:45:30 GMT
- Title: Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning
- Authors: Yang Zhao, Zidong Nie, Kangsheng Dong, Qinghua Huang, Xuelong Li,
- Abstract summary: This paper proposes a deep reinforcement learning-based model for decision-making in multi-role UAV cooperative pursuit-evasion game.
The proposed method enables autonomous decision-making of the UAVs in pursuit-evasion game scenarios.
- Score: 50.33447711072726
- License:
- Abstract: The application of intelligent decision-making in unmanned aerial vehicle (UAV) is increasing, and with the development of UAV 1v1 pursuit-evasion game, multi-UAV cooperative game has emerged as a new challenge. This paper proposes a deep reinforcement learning-based model for decision-making in multi-role UAV cooperative pursuit-evasion game, to address the challenge of enabling UAV to autonomously make decisions in complex game environments. In order to enhance the training efficiency of the reinforcement learning algorithm in UAV pursuit-evasion game environment that has high-dimensional state-action space, this paper proposes multi-environment asynchronous double deep Q-network with priority experience replay algorithm to effectively train the UAV's game policy. Furthermore, aiming to improve cooperation ability and task completion efficiency, as well as minimize the cost of UAVs in the pursuit-evasion game, this paper focuses on the allocation of roles and targets within multi-UAV environment. The cooperative game decision model with varying numbers of UAVs are obtained by assigning diverse tasks and roles to the UAVs in different scenarios. The simulation results demonstrate that the proposed method enables autonomous decision-making of the UAVs in pursuit-evasion game scenarios and exhibits significant capabilities in cooperation.
Related papers
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - UAV Obstacle Avoidance by Human-in-the-Loop Reinforcement in Arbitrary
3D Environment [17.531224704021273]
This paper focuses on the continuous control of the unmanned aerial vehicle (UAV) based on a deep reinforcement learning method.
We propose a deep reinforcement learning (DRL)-based method combined with human-in-the-loop, which allows the UAV to avoid obstacles automatically during flying.
arXiv Detail & Related papers (2023-04-07T01:44:05Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - Solving reward-collecting problems with UAVs: a comparison of online
optimization and Q-learning [2.4251007104039006]
We study the problem of identifying a short path from a designated start to a goal, while collecting all rewards and avoiding adversaries that move randomly on the grid.
We present a comparison of three methods to solve this problem: namely we implement a Deep Q-Learning model, an $varepsilon$-greedy tabular Q-Learning model, and an online optimization framework.
Our experiments, designed using simple grid-world environments with random adversaries, showcase how these approaches work and compare them in terms of performance, accuracy, and computational time.
arXiv Detail & Related papers (2021-11-30T22:27:24Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z) - Autonomous UAV Navigation: A DDPG-based Deep Reinforcement Learning
Approach [1.552282932199974]
We propose an autonomous UAV path planning framework using deep reinforcement learning approach.
The objective is to employ a self-trained UAV as a flying mobile unit to reach spatially distributed moving or static targets.
arXiv Detail & Related papers (2020-03-21T19:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.