Ab Initio Particle-based Object Manipulation
- URL: http://arxiv.org/abs/2107.08865v1
- Date: Mon, 19 Jul 2021 13:27:00 GMT
- Title: Ab Initio Particle-based Object Manipulation
- Authors: Siwei Chen, Xiao Ma, Yunfan Lu and David Hsu
- Abstract summary: Particle-based Object Manipulation (Prompt) is a new approach to robot manipulation of novel objects ab initio.
Prompt combines the benefits of both model-based reasoning and data-driven learning.
Prompt successfully handles a variety of everyday objects, some of which are transparent.
- Score: 22.78939235155233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents Particle-based Object Manipulation (Prompt), a new
approach to robot manipulation of novel objects ab initio, without prior object
models or pre-training on a large object data set. The key element of Prompt is
a particle-based object representation, in which each particle represents a
point in the object, the local geometric, physical, and other features of the
point, and also its relation with other particles. Like the model-based
analytic approaches to manipulation, the particle representation enables the
robot to reason about the object's geometry and dynamics in order to choose
suitable manipulation actions. Like the data-driven approaches, the particle
representation is learned online in real-time from visual sensor input,
specifically, multi-view RGB images. The particle representation thus connects
visual perception with robot control. Prompt combines the benefits of both
model-based reasoning and data-driven learning. We show empirically that Prompt
successfully handles a variety of everyday objects, some of which are
transparent. It handles various manipulation tasks, including grasping,
pushing, etc,. Our experiments also show that Prompt outperforms a
state-of-the-art data-driven grasping method on the daily objects, even though
it does not use any offline training data.
Related papers
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
We introduce an interactive robotic manipulation framework called Polaris.
Polaris integrates perception and interaction by utilizing GPT-4 alongside grounded vision models.
We propose a novel Synthetic-to-Real (Syn2Real) pose estimation pipeline.
arXiv Detail & Related papers (2024-08-15T06:40:38Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - Click to Grasp: Zero-Shot Precise Manipulation via Visual Diffusion Descriptors [30.579707929061026]
Our work explores the grounding of fine-grained part descriptors for precise manipulation in a zero-shot setting.
We tackle the problem by framing it as a dense semantic part correspondence task.
Our model returns a gripper pose for manipulating a specific part, using as reference a user-defined click from a source image of a visually different instance of the same object.
arXiv Detail & Related papers (2024-03-21T16:26:19Z) - ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
We introduce an end-to-end architecture for object-centric grasping.
We show the effectiveness of the proposed method by extensively evaluating it against state-of-the-art methods on synthetic datasets.
arXiv Detail & Related papers (2024-01-18T12:41:41Z) - Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation [4.7246285569677315]
We present Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptor that not only understands the object via appropriate representation but also maps simulated and real data to a unified feature space with pixel consistency.
We demonstrate in experiments that pre-trained SRDONs significantly improve performances on unseen objects and unseen visual environments for various robotic tasks with zero real-world training.
arXiv Detail & Related papers (2023-04-18T02:28:55Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
We propose a graph neural network, HO-GCN, to fuse motion data and dynamic descriptors for the prediction task.
We show the proposed network that consumes dynamic descriptors can achieve state-of-the-art prediction results and help the network better generalize to unseen objects.
arXiv Detail & Related papers (2022-06-25T09:55:39Z) - KINet: Unsupervised Forward Models for Robotic Pushing Manipulation [8.572983995175909]
We introduce KINet -- an unsupervised framework to reason about object interactions based on a keypoint representation.
Our model learns to associate objects with keypoint coordinates and discovers a graph representation of the system.
By learning to perform physical reasoning in the keypoint space, our model automatically generalizes to scenarios with a different number of objects.
arXiv Detail & Related papers (2022-02-18T03:32:08Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATE is a robot system that interacts with human through natural language and grasps a specified object in clutter.
We train separate neural networks for object detection, for visual grounding, for question generation, and for OBR detection and grasping.
We build a partially observable Markov decision process (POMDP) that integrates the learned neural network modules.
arXiv Detail & Related papers (2021-08-25T07:35:21Z) - "What's This?" -- Learning to Segment Unknown Objects from Manipulation
Sequences [27.915309216800125]
We present a novel framework for self-supervised grasped object segmentation with a robotic manipulator.
We propose a single, end-to-end trainable architecture which jointly incorporates motion cues and semantic knowledge.
Our method neither depends on any visual registration of a kinematic robot or 3D object models, nor on precise hand-eye calibration or any additional sensor data.
arXiv Detail & Related papers (2020-11-06T10:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.