論文の概要: Analysing Cyberbullying using Natural Language Processing by
Understanding Jargon in Social Media
- arxiv url: http://arxiv.org/abs/2107.08902v1
- Date: Fri, 23 Apr 2021 04:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-02 14:51:08.847811
- Title: Analysing Cyberbullying using Natural Language Processing by
Understanding Jargon in Social Media
- Title(参考訳): 自然言語処理によるソーシャルメディアにおけるJargon理解によるサイバーいじめの分析
- Authors: Bhumika Bhatia, Anuj Verma, Anjum, Rahul Katarya
- Abstract要約: 本稿では,さまざまなソーシャルメディアプラットフォームからのデータセットの組み合わせを用いて,バイナリ分類について検討する。
我々は,Bi-LSTM,GloVe,BERTなどの最先端モデルなど複数のモデルを用いて実験を行い,スラング悪用コーパスを導入して独自の前処理手法を適用した。
- 参考スコア(独自算出の注目度): 4.932130498861987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyberbullying is of extreme prevalence today. Online-hate comments, toxicity,
cyberbullying amongst children and other vulnerable groups are only growing
over online classes, and increased access to social platforms, especially post
COVID-19. It is paramount to detect and ensure minors' safety across social
platforms so that any violence or hate-crime is automatically detected and
strict action is taken against it. In our work, we explore binary
classification by using a combination of datasets from various social media
platforms that cover a wide range of cyberbullying such as sexism, racism,
abusive, and hate-speech. We experiment through multiple models such as
Bi-LSTM, GloVe, state-of-the-art models like BERT, and apply a unique
preprocessing technique by introducing a slang-abusive corpus, achieving a
higher precision in comparison to models without slang preprocessing.
- Abstract(参考訳): サイバーいじめは今日は極端に流行している。
オンラインのヘイトなコメント、毒性、子どもやそのほかの脆弱なグループに対するサイバーいじめは、オンラインのクラスでしか増えていない。
暴力やヘイトクライムが自動的に検出され、それに対する厳格な措置が取られるように、未成年の安全を社会プラットフォーム全体で検出し保証することが最重要である。
本研究では,セクシズム,人種差別,虐待,ヘイトスピーチなど,幅広いサイバーいじめをカバーするソーシャルメディアプラットフォームのデータセットを組み合わせてバイナリ分類を行う。
bi-lstm, glove, state-of-the-art modelなどの複数のモデルを用いて実験を行い,slang-abusive corpusを導入することで,slang前処理を伴わないモデルよりも高精度なプリプロセッシング手法を適用した。
関連論文リスト
- Sentiment Analysis of Cyberbullying Data in Social Media [0.0]
我々の研究は、ソーシャルメディア投稿におけるいじめの痕跡を検出するために、ディープラーニングと自然言語理解技術を活用することに焦点を当てている。
1つのアプローチではBERT埋め込みを使用し、もう1つはOpenAIから最近リリースされた埋め込みAPIに埋め込みレイヤを置き換える。
フォームスプリング型サイバーバブルデータにおける感情分析の有効性を評価するために,これらの2つの手法の性能比較を行った。
論文 参考訳(メタデータ) (2024-11-08T20:41:04Z) - The Use of a Large Language Model for Cyberbullying Detection [0.0]
サイバーいじめ(CB)は、今日のサイバー世界で最も多い現象である。
これは市民の精神的および身体的健康に対する深刻な脅威である。
これにより、オンラインフォーラム、ブログ、ソーシャルメディアプラットフォームからいじめコンテンツを防ぐ堅牢なシステムを開発する必要が生じる。
論文 参考訳(メタデータ) (2024-02-06T15:46:31Z) - Explain Thyself Bully: Sentiment Aided Cyberbullying Detection with
Explanation [52.3781496277104]
さまざまなソーシャルメディアネットワークやオンラインコミュニケーションアプリの人気により、サイバーいじめが大きな問題になっている。
一般データ保護規則の「説明の権利」のような近年の法律は、解釈可能なモデルの開発に拍車をかけた。
我々は,コード混在言語からの自動サイバーバブル検出のための,mExCBと呼ばれる最初の解釈可能なマルチタスクモデルを開発した。
論文 参考訳(メタデータ) (2024-01-17T07:36:22Z) - Deep Learning Based Cyberbullying Detection in Bangla Language [0.0]
本研究は,ベンガルのサイバーいじめを識別する深層学習戦略を実証する。
2層双方向長短期メモリ(Bi-LSTM)モデルが構築され、サイバーいじめを識別する。
論文 参考訳(メタデータ) (2024-01-07T04:58:59Z) - Understanding writing style in social media with a supervised
contrastively pre-trained transformer [57.48690310135374]
オンラインソーシャルネットワークは、ヘイトスピーチから偽情報の拡散まで、有害な行動の場として機能している。
本稿では, 4.5 x 106テキストの公開資料から得られた大規模コーパスに基づいて学習したStyle Transformer for Authorship Representations (STAR)を紹介する。
512個のトークンからなる8つのドキュメントからなるサポートベースを使用して、著者を最大1616人の著者のセットから、少なくとも80%の精度で識別することができる。
論文 参考訳(メタデータ) (2023-10-17T09:01:17Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Detecting Harmful Content On Online Platforms: What Platforms Need Vs.
Where Research Efforts Go [44.774035806004214]
オンラインプラットフォーム上の有害コンテンツには、ヘイトスピーチ、攻撃的言語、いじめとハラスメント、誤情報、スパム、暴力、グラフィックコンテンツ、性的虐待、自己被害など、さまざまな形態がある。
オンラインプラットフォームは、そのようなコンテンツを、社会的危害を抑えるため、法律に従うために、ユーザーのためにより包括的な環境を作るために、緩和しようとしている。
現在、オンラインプラットフォームが抑制しようとしている有害なコンテンツの種類と、そのようなコンテンツを自動的に検出する研究努力との間には、隔たりがある。
論文 参考訳(メタデータ) (2021-02-27T08:01:10Z) - Aggressive, Repetitive, Intentional, Visible, and Imbalanced: Refining
Representations for Cyberbullying Classification [4.945634077636197]
本研究では,その社会的・言語的側面を表現するために,5つの明確な要因を用いて,サイバーいじめのニュアンスな問題を考察する。
これらの結果は、サイバーいじめを社会現象として表現し、モデル化することの重要性を示している。
論文 参考訳(メタデータ) (2020-04-04T00:35:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。