論文の概要: Sentiment Analysis of Cyberbullying Data in Social Media
- arxiv url: http://arxiv.org/abs/2411.05958v1
- Date: Fri, 08 Nov 2024 20:41:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:13:17.120483
- Title: Sentiment Analysis of Cyberbullying Data in Social Media
- Title(参考訳): ソーシャルメディアにおけるサイバーいじめデータの感性分析
- Authors: Arvapalli Sai Susmitha, Pradeep Pujari,
- Abstract要約: 我々の研究は、ソーシャルメディア投稿におけるいじめの痕跡を検出するために、ディープラーニングと自然言語理解技術を活用することに焦点を当てている。
1つのアプローチではBERT埋め込みを使用し、もう1つはOpenAIから最近リリースされた埋め込みAPIに埋め込みレイヤを置き換える。
フォームスプリング型サイバーバブルデータにおける感情分析の有効性を評価するために,これらの2つの手法の性能比較を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Social media has become an integral part of modern life, but it has also brought with it the pervasive issue of cyberbullying a serious menace in today's digital age. Cyberbullying, a form of harassment that occurs on social networks, has escalated alongside the growth of these platforms. Sentiment analysis holds significant potential not only for detecting bullying phrases but also for identifying victims who are at high risk of harm, whether to themselves or others. Our work focuses on leveraging deep learning and natural language understanding techniques to detect traces of bullying in social media posts. We developed a Recurrent Neural Network with Long Short-Term Memory (LSTM) cells, using different embeddings. One approach utilizes BERT embeddings, while the other replaces the embeddings layer with the recently released embeddings API from OpenAI. We conducted a performance comparison between these two approaches to evaluate their effectiveness in sentiment analysis of Formspring Cyberbullying data. Our Code is Available at https://github.com/ppujari/xcs224u
- Abstract(参考訳): ソーシャルメディアは現代生活の不可欠な部分となっているが、今日のデジタル時代における深刻な脅威をサイバーいじめが広範囲に及ぼした問題でもある。
ソーシャルネットワーク上で発生するハラスメントの一形態であるCyberbullyingは、これらのプラットフォームの成長とともにエスカレートしている。
センチメント分析は、いじめのフレーズを検出するだけでなく、自分や他人のリスクが高い被害者を特定する上でも有意義な可能性を秘めている。
我々の研究は、ソーシャルメディア投稿におけるいじめの痕跡を検出するために、ディープラーニングと自然言語理解技術を活用することに焦点を当てている。
本研究では,長期記憶(Long Short-Term Memory)細胞を用いたリカレントニューラルネットワークを開発した。
1つのアプローチではBERT埋め込みを使用し、もう1つはOpenAIから最近リリースされた埋め込みAPIに埋め込みレイヤを置き換える。
フォームスプリング型サイバーバブルデータにおける感情分析の有効性を評価するために,これらの2つの手法の性能比較を行った。
私たちのコードはhttps://github.com/ppujari/xcs224uで利用可能です。
関連論文リスト
- Securing Social Spaces: Harnessing Deep Learning to Eradicate Cyberbullying [1.8749305679160366]
サイバーいじめは ソーシャルメディアを使う人の心身の健康を害する深刻な問題だ
本稿は、サイバーいじめがいかに深刻か、そしてそれが被曝した個人にどのように影響するかを説明する。
オンライン空間の安全性を高めるために、より優れたサイバーいじめ検出方法を見つけることがいかに重要かを強調している。
論文 参考訳(メタデータ) (2024-04-01T20:41:28Z) - The Use of a Large Language Model for Cyberbullying Detection [0.0]
サイバーいじめ(CB)は、今日のサイバー世界で最も多い現象である。
これは市民の精神的および身体的健康に対する深刻な脅威である。
これにより、オンラインフォーラム、ブログ、ソーシャルメディアプラットフォームからいじめコンテンツを防ぐ堅牢なシステムを開発する必要が生じる。
論文 参考訳(メタデータ) (2024-02-06T15:46:31Z) - Explain Thyself Bully: Sentiment Aided Cyberbullying Detection with
Explanation [52.3781496277104]
さまざまなソーシャルメディアネットワークやオンラインコミュニケーションアプリの人気により、サイバーいじめが大きな問題になっている。
一般データ保護規則の「説明の権利」のような近年の法律は、解釈可能なモデルの開発に拍車をかけた。
我々は,コード混在言語からの自動サイバーバブル検出のための,mExCBと呼ばれる最初の解釈可能なマルチタスクモデルを開発した。
論文 参考訳(メタデータ) (2024-01-17T07:36:22Z) - Understanding writing style in social media with a supervised
contrastively pre-trained transformer [57.48690310135374]
オンラインソーシャルネットワークは、ヘイトスピーチから偽情報の拡散まで、有害な行動の場として機能している。
本稿では, 4.5 x 106テキストの公開資料から得られた大規模コーパスに基づいて学習したStyle Transformer for Authorship Representations (STAR)を紹介する。
512個のトークンからなる8つのドキュメントからなるサポートベースを使用して、著者を最大1616人の著者のセットから、少なくとも80%の精度で識別することができる。
論文 参考訳(メタデータ) (2023-10-17T09:01:17Z) - Cyberbullying in Text Content Detection: An Analytical Review [0.0]
オンラインソーシャルネットワークは、自殺、摂食障害、サイバー犯罪、強制行動、不安、抑うつといった生命を脅かす状況へのユーザーの露出を増大させる。
サイバーいじめの問題を解決するため、既存の文献の多くは、要因を特定し、サイバーいじめに関連するテキスト的要因を理解するためのアプローチの開発に重点を置いている。
本稿では,サイバーバブル検出の理解を深めるために,総合的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-03-18T21:23:06Z) - DISARM: Detecting the Victims Targeted by Harmful Memes [49.12165815990115]
DISARMは、有害なミームを検出するために名前付きエンティティ認識と個人識別を使用するフレームワークである。
DISARMは10の単一モーダル・マルチモーダルシステムより著しく優れていることを示す。
複数の強力なマルチモーダルライバルに対して、有害なターゲット識別の相対誤差率を最大9ポイントまで下げることができる。
論文 参考訳(メタデータ) (2022-05-11T19:14:26Z) - Res-CNN-BiLSTM Network for overcoming Mental Health Disturbances caused
due to Cyberbullying through Social Media [3.1871776847712523]
サイバーいじめは宗教、倫理、年齢、ジェンダーに基づいて行われる。
ソーシャルメディアはメディアであり、テキスト形式で大量のデータを生成する。
論文 参考訳(メタデータ) (2022-04-20T18:40:39Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - What goes on inside rumour and non-rumour tweets and their reactions: A
Psycholinguistic Analyses [58.75684238003408]
ソーシャルメディアのテキストの心理言語学的分析は、誤情報を緩和するために意味のある結論を導くのに不可欠である。
本研究は,様々な事象に関する噂の深い心理言語学的分析を行うことによって貢献する。
論文 参考訳(メタデータ) (2021-11-09T07:45:11Z) - Analysing Cyberbullying using Natural Language Processing by
Understanding Jargon in Social Media [4.932130498861987]
本稿では,さまざまなソーシャルメディアプラットフォームからのデータセットの組み合わせを用いて,バイナリ分類について検討する。
我々は,Bi-LSTM,GloVe,BERTなどの最先端モデルなど複数のモデルを用いて実験を行い,スラング悪用コーパスを導入して独自の前処理手法を適用した。
論文 参考訳(メタデータ) (2021-04-23T04:20:19Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。