論文の概要: OODformer: Out-Of-Distribution Detection Transformer
- arxiv url: http://arxiv.org/abs/2107.08976v1
- Date: Mon, 19 Jul 2021 15:46:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-20 17:40:56.583363
- Title: OODformer: Out-Of-Distribution Detection Transformer
- Title(参考訳): OODformer:Out-Of-Distribution Detection Transformer
- Authors: Rajat Koner, Poulami Sinhamahapatra, Karsten Roscher, Stephan
G\"unnemann, Volker Tresp
- Abstract要約: 現実世界の安全クリティカルなアプリケーションでは、新しいデータポイントがOODであるかどうかを認識することが重要です。
本稿では,OODformer というファースト・オブ・ザ・キンドな OOD 検出アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 15.17006322500865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A serious problem in image classification is that a trained model might
perform well for input data that originates from the same distribution as the
data available for model training, but performs much worse for
out-of-distribution (OOD) samples. In real-world safety-critical applications,
in particular, it is important to be aware if a new data point is OOD. To date,
OOD detection is typically addressed using either confidence scores,
auto-encoder based reconstruction, or by contrastive learning. However, the
global image context has not yet been explored to discriminate the non-local
objectness between in-distribution and OOD samples. This paper proposes a
first-of-its-kind OOD detection architecture named OODformer that leverages the
contextualization capabilities of the transformer. Incorporating the
trans\-former as the principal feature extractor allows us to exploit the
object concepts and their discriminate attributes along with their
co-occurrence via visual attention. Using the contextualised embedding, we
demonstrate OOD detection using both class-conditioned latent space similarity
and a network confidence score. Our approach shows improved generalizability
across various datasets. We have achieved a new state-of-the-art result on
CIFAR-10/-100 and ImageNet30.
- Abstract(参考訳): 画像分類における深刻な問題は、トレーニングされたモデルが、モデルトレーニングで利用可能なデータと同じ分布から派生した入力データに対してうまく機能するが、アウト・オブ・ディストリビューション(OOD)のサンプルでは、はるかに悪化する可能性があることである。
特に、現実世界の安全クリティカルなアプリケーションでは、新しいデータポイントがOODであるかどうかを認識することが重要です。
これまでにOOD検出は、信頼スコア、オートエンコーダベースの再構築、あるいはコントラスト学習によって対処される。
しかし、グローバル画像コンテキストは、分布内とOODサンプルの非局所的対象性を識別するためにはまだ研究されていない。
本稿では,変換器の文脈化機能を利用するOODformerという,第1世代のOOD検出アーキテクチャを提案する。
Trans\-formerを主特徴抽出器として組み込むことで、視覚的注意による共起とともに、対象概念とその識別属性を活用できる。
文脈埋め込みを用いて,クラス条件付き遅延空間類似度とネットワーク信頼度を用いたOOD検出を実証する。
提案手法は,各種データセット間の一般化性の向上を示す。
我々は CIFAR-10/-100 と ImageNet30 で最新の結果を得た。
関連論文リスト
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - OOD Aware Supervised Contrastive Learning [13.329080722482187]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習モデルの安全なデプロイにおいて重要な問題である。
我々は、Supervised Contrastive (SupCon)トレーニングで学んだ強力な表現を活用し、OODデータに対する堅牢性を学ぶための総合的なアプローチを提案する。
我々の解は単純で効率的であり、閉集合教師付きコントラスト表現学習の自然な拡張として機能する。
論文 参考訳(メタデータ) (2023-10-03T10:38:39Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
外周露光(OE)は、オフ・オブ・ディストリビューション(OOD)検出において強力である。
我々は,未確認のOOD状況に対してモデルの性能を良くする,新しいOEベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-09T04:36:38Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。