論文の概要: Igeood: An Information Geometry Approach to Out-of-Distribution
Detection
- arxiv url: http://arxiv.org/abs/2203.07798v1
- Date: Tue, 15 Mar 2022 11:26:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 13:00:24.563826
- Title: Igeood: An Information Geometry Approach to Out-of-Distribution
Detection
- Title(参考訳): igeood: 分布外検出への情報幾何アプローチ
- Authors: Eduardo Dadalto Camara Gomes, Florence Alberge, Pierre Duhamel and
Pablo Piantanida
- Abstract要約: Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 35.04325145919005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable out-of-distribution (OOD) detection is fundamental to implementing
safer modern machine learning (ML) systems. In this paper, we introduce Igeood,
an effective method for detecting OOD samples. Igeood applies to any
pre-trained neural network, works under various degrees of access to the ML
model, does not require OOD samples or assumptions on the OOD data but can also
benefit (if available) from OOD samples. By building on the geodesic
(Fisher-Rao) distance between the underlying data distributions, our
discriminator can combine confidence scores from the logits outputs and the
learned features of a deep neural network. Empirically, we show that Igeood
outperforms competing state-of-the-art methods on a variety of network
architectures and datasets.
- Abstract(参考訳): 信頼性の高いアウト・オブ・ディストリビューション(OOD)検出は、より安全な機械学習(ML)システムを実装するための基本となる。
本稿では,OODサンプルの検出に有効な方法であるIgeoodを紹介する。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、MLモデルへのさまざまなアクセス度の下で動作し、OODデータにOODサンプルや仮定を必要としないが、OODサンプルから(利用可能であれば)恩恵を受けることができる。
基礎となるデータ分布間の測地線(Fisher-Rao)距離を構築することで、当社の判別器は、ロジット出力からの信頼スコアと深層ニューラルネットワークの学習特徴を組み合わせることができる。
経験的に、Igeoodはさまざまなネットワークアーキテクチャやデータセット上で競合する最先端の手法よりも優れています。
関連論文リスト
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - Logit Scaling for Out-of-Distribution Detection [13.017887434494373]
トレーニングデータ配信へのアクセスを必要としない簡易なポストホック手法を提案する。
当社の方法である Logit Scaling (LTS) は, 物流内分布(ID) と OOD サンプルを効果的に区別する方法でロジットをスケールする。
CIFAR-10, CIFAR-100, ImageNet, OpenOOD など,様々なスケールでベンチマークを行った。
論文 参考訳(メタデータ) (2024-09-02T11:10:44Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - Gradient-Regularized Out-of-Distribution Detection [28.542499196417214]
現実のアプリケーションにおけるニューラルネットワークの課題の1つは、これらのモデルが元のトレーニングディストリビューションからデータが送られていないときに犯す過信エラーである。
本稿では,学習中の損失関数の勾配に埋め込まれた情報を活用して,ネットワークが各サンプルに対して所望のOODスコアを学習できるようにする方法を提案する。
また、トレーニング期間中に、より情報性の高いOODサンプルにネットワークを露出させるための、新しいエネルギーベースのサンプリング手法を開発した。
論文 参考訳(メタデータ) (2024-04-18T17:50:23Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
アウト・オブ・ディストリビューション(OOD)検出は、予測者が有効な予測を行うことができないOODデータをイン・ディストリビューション(ID)データとして識別する。
通常、OODパターンを識別できる予測器をトレーニングするために、実際のアウト・オブ・ディストリビューション(OOD)データを収集するのは困難である。
本稿では,Auxiliary Task-based OOD Learning (ATOL) というデータ生成に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:26:52Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - WeShort: Out-of-distribution Detection With Weak Shortcut structure [0.0]
我々は,OODデータに対するニューラルネットワークの過信を低減するために,シンプルで効果的なポストホック手法WeShortを提案する。
提案手法はOOD検出の異なるスコアと互換性があり,ネットワークの異なるアーキテクチャによく対応できる。
論文 参考訳(メタデータ) (2022-06-23T07:59:10Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - EARLIN: Early Out-of-Distribution Detection for Resource-efficient
Collaborative Inference [4.826988182025783]
協調推論により、リソース制約のあるエッジデバイスは、入力をサーバにアップロードすることで推論を行うことができる。
このセットアップは、成功した推論のためにコスト効率よく機能するが、モデルがトレーニングされていない入力サンプルに直面すると、非常にパフォーマンスが低下する。
我々は,事前訓練されたCNNモデルの浅い層から重要な特徴を抽出する,新しい軽量OOD検出手法を提案する。
論文 参考訳(メタデータ) (2021-06-25T18:43:23Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。