論文の概要: A New Clustering-Based Technique for the Acceleration of Deep
Convolutional Networks
- arxiv url: http://arxiv.org/abs/2107.09095v1
- Date: Mon, 19 Jul 2021 18:22:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-22 00:24:42.726923
- Title: A New Clustering-Based Technique for the Acceleration of Deep
Convolutional Networks
- Title(参考訳): 深部畳み込みネットワークの高速化のためのクラスタリングに基づく新しい手法
- Authors: Erion-Vasilis Pikoulis, Christos Mavrokefalidis, Aris S. Lalos
- Abstract要約: MCA(Model Compression and Acceleration)技術は、大規模な事前学習ネットワークをより小さなモデルに変換するために用いられる。
本稿では,採用したセントロイド/表現量を増やすクラスタリングに基づく手法を提案する。
これは、被雇用者に対して特別な構造を課すことによって達成され、これは、目の前の問題の特異性によって実現される。
- 参考スコア(独自算出の注目度): 2.7393821783237184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning and especially the use of Deep Neural Networks (DNNs) provides
impressive results in various regression and classification tasks. However, to
achieve these results, there is a high demand for computing and storing
resources. This becomes problematic when, for instance, real-time, mobile
applications are considered, in which the involved (embedded) devices have
limited resources. A common way of addressing this problem is to transform the
original large pre-trained networks into new smaller models, by utilizing Model
Compression and Acceleration (MCA) techniques. Within the MCA framework, we
propose a clustering-based approach that is able to increase the number of
employed centroids/representatives, while at the same time, have an
acceleration gain compared to conventional, $k$-means based approaches. This is
achieved by imposing a special structure to the employed representatives, which
is enabled by the particularities of the problem at hand. Moreover, the
theoretical acceleration gains are presented and the key system
hyper-parameters that affect that gain, are identified. Extensive evaluation
studies carried out using various state-of-the-art DNN models trained in image
classification, validate the superiority of the proposed method as compared for
its use in MCA tasks.
- Abstract(参考訳): ディープラーニング、特にDeep Neural Networks(DNN)の使用は、さまざまなレグレッションと分類タスクにおいて素晴らしい結果をもたらす。
しかし、これらの結果を達成するためには、リソースの計算と保存の需要が高い。
例えば、リアルタイムのモバイルアプリケーションを考えると、関連する(組み込まれた)デバイスにリソースが限られている場合、これは問題となる。
この問題に対処する一般的な方法は、モデル圧縮・加速(MCA)技術を利用して、元の大きな事前訓練ネットワークを新しい小さなモデルに変換することである。
MCAフレームワーク内では,従来の$k$-meansをベースとしたアプローチと比較して,採用したセントロイド/表現量を増やすことができるクラスタリングベースのアプローチを提案する。
これは、雇用された代表者に特別な構造を課すことで実現され、これは問題の特殊性によって実現される。
さらに、理論的な加速ゲインが提示され、そのゲインに影響を与えるキーシステムハイパーパラメータが同定される。
画像分類において訓練された様々な最先端DNNモデルを用いて大規模な評価を行い, MCAタスクに比較して提案手法の優位性を検証した。
関連論文リスト
- A practical existence theorem for reduced order models based on convolutional autoencoders [0.4604003661048266]
部分微分方程式 (PDE) と還元次数モデリング (ROM) の分野ではディープラーニングが人気を博している。
CNNベースのオートエンコーダは、複雑な非線形問題に対処する際、低基底法などの確立された手法よりも極めて効果的であることが証明されている。
パラメーター対解写像が正則である場合、CNNベースの自己エンコーダに対して新しい実用的存在定理を提供する。
論文 参考訳(メタデータ) (2024-02-01T09:01:58Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
非構造データを用いた高忠実度予測のための局所収束入力(NNLCI)を用いたニューラルネットワークを開発した。
また, NNLCI法を用いて, バンプを有するチャネル内の超音速流の可視化を行った。
論文 参考訳(メタデータ) (2023-10-23T19:03:37Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - On-Device Domain Generalization [93.79736882489982]
ドメインの一般化はデバイス上の機械学習アプリケーションにとって重要である。
知識蒸留がこの問題の解決の有力な候補であることがわかった。
本研究では,教師が配布外データをどのように扱えるかを学生に教えることを目的とした,配布外知識蒸留(OKD)という簡単なアイデアを提案する。
論文 参考訳(メタデータ) (2022-09-15T17:59:31Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
微調整されたセマンティックセグメンテーションは、近年深く研究されている困難な問題です。
本稿では、オブジェクトが現れる固有のコンテキストを変更する Context Decoupling Augmentation (CDA) メソッドを紹介します。
提案手法の有効性を検証するため, PASCAL VOC 2012データセットにいくつかの代替ネットワークアーキテクチャを用いた広範な実験を行い, CDAが様々なWSSS手法を新たな最先端技術に拡張できることを実証した。
論文 参考訳(メタデータ) (2021-03-02T15:05:09Z) - A Variational Information Bottleneck Based Method to Compress Sequential
Networks for Human Action Recognition [9.414818018857316]
本稿では,人間行動認識(HAR)に用いるリカレントニューラルネットワーク(RNN)を効果的に圧縮する手法を提案する。
変分情報ボトルネック(VIB)理論に基づくプルーニング手法を用いて,RNNの逐次セルを流れる情報の流れを小さなサブセットに制限する。
我々は、圧縮を大幅に改善する特定のグループ・ラッソ正規化手法とプルーニング手法を組み合わせる。
提案手法は,UCF11上での動作認識の精度に比較して,最も近い競合に比べて70倍以上の圧縮を実現する。
論文 参考訳(メタデータ) (2020-10-03T12:41:51Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
オートエンコーダを用いた低ランクフィルタ共有技術(ALF)を提案する。
ALFは、ネットワークパラメータの70%、オペレーションの61%、実行時間の41%を削減し、精度の低下を最小限にしている。
論文 参考訳(メタデータ) (2020-07-27T09:01:22Z) - SRDCNN: Strongly Regularized Deep Convolution Neural Network
Architecture for Time-series Sensor Signal Classification Tasks [4.950427992960756]
SRDCNN: 時系列分類タスクを実行するために, SRDCNN(Strongly Regularized Deep Convolution Neural Network)をベースとしたディープアーキテクチャを提案する。
提案手法の新規性は、ネットワークウェイトが L1 と L2 のノルム法則によって正則化されることである。
論文 参考訳(メタデータ) (2020-07-14T08:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。