論文の概要: A Variational Information Bottleneck Based Method to Compress Sequential
Networks for Human Action Recognition
- arxiv url: http://arxiv.org/abs/2010.01343v2
- Date: Mon, 9 Nov 2020 14:36:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 09:02:04.759872
- Title: A Variational Information Bottleneck Based Method to Compress Sequential
Networks for Human Action Recognition
- Title(参考訳): 人間行動認識のための逐次ネットワーク圧縮のための変分情報ボトルネックに基づく手法
- Authors: Ayush Srivastava, Oshin Dutta, Prathosh AP, Sumeet Agarwal, Jigyasa
Gupta
- Abstract要約: 本稿では,人間行動認識(HAR)に用いるリカレントニューラルネットワーク(RNN)を効果的に圧縮する手法を提案する。
変分情報ボトルネック(VIB)理論に基づくプルーニング手法を用いて,RNNの逐次セルを流れる情報の流れを小さなサブセットに制限する。
我々は、圧縮を大幅に改善する特定のグループ・ラッソ正規化手法とプルーニング手法を組み合わせる。
提案手法は,UCF11上での動作認識の精度に比較して,最も近い競合に比べて70倍以上の圧縮を実現する。
- 参考スコア(独自算出の注目度): 9.414818018857316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last few years, compression of deep neural networks has become an
important strand of machine learning and computer vision research. Deep models
require sizeable computational complexity and storage, when used for instance
for Human Action Recognition (HAR) from videos, making them unsuitable to be
deployed on edge devices. In this paper, we address this issue and propose a
method to effectively compress Recurrent Neural Networks (RNNs) such as Gated
Recurrent Units (GRUs) and Long-Short-Term-Memory Units (LSTMs) that are used
for HAR. We use a Variational Information Bottleneck (VIB) theory-based pruning
approach to limit the information flow through the sequential cells of RNNs to
a small subset. Further, we combine our pruning method with a specific
group-lasso regularization technique that significantly improves compression.
The proposed techniques reduce model parameters and memory footprint from
latent representations, with little or no reduction in the validation accuracy
while increasing the inference speed several-fold. We perform experiments on
the three widely used Action Recognition datasets, viz. UCF11, HMDB51, and
UCF101, to validate our approach. It is shown that our method achieves over 70
times greater compression than the nearest competitor with comparable accuracy
for the task of action recognition on UCF11.
- Abstract(参考訳): ここ数年、深層ニューラルネットワークの圧縮は、機械学習とコンピュータビジョン研究の重要な一糸となっている。
ディープモデルは、例えばビデオからのヒューマンアクション認識(HAR)に使用する場合、計算の複雑さとストレージが大きくなる必要があるため、エッジデバイスにデプロイするのは不適当である。
本稿では,HAR に使用される Gated Recurrent Units (GRU) や Long-Short-Term-Memory Units (LSTM) などのリカレントニューラルネットワーク (RNN) を効果的に圧縮する手法を提案する。
変分情報ボトルネック(VIB)理論に基づくプルーニング手法を用いて,RNNの逐次セルを流れる情報の流れを小さなサブセットに制限する。
さらに,本手法と特定のグループラッソ正則化手法を組み合わせることで,圧縮を著しく改善する。
提案手法は,モデルパラメータとメモリフットプリントを潜在表現から削減し,推定速度を数倍に増やしながら検証精度をほとんど,あるいは全く低下させる。
広く使われている3つの行動認識データセット、vizについて実験を行った。
ucf11、hmdb51、utf101は、我々のアプローチを検証する。
提案手法は,UCF11における動作認識の精度に比較して,最も近い競合に比べて70倍以上の圧縮を実現する。
関連論文リスト
- Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Learnable Mixed-precision and Dimension Reduction Co-design for
Low-storage Activation [9.838135675969026]
深層畳み込みニューラルネットワーク(CNN)は多くの眼球運動の結果を得た。
リソース制約のあるエッジデバイスにCNNをデプロイすることは、推論中に大きな中間データを送信するためのメモリ帯域幅の制限によって制限される。
チャネルをグループに分割し,その重要度に応じて圧縮ポリシーを割り当てる,学習可能な混合精度・次元縮小協調設計システムを提案する。
論文 参考訳(メタデータ) (2022-07-16T12:53:52Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - a novel attention-based network for fast salient object detection [14.246237737452105]
現在の有向物体検出ネットワークにおいて、最も一般的な方法はU字型構造を用いることである。
3つのコントリビューションを持つ新しい深層畳み込みネットワークアーキテクチャを提案する。
提案手法は, 精度を損なうことなく, 原サイズの1/3まで圧縮できることを示した。
論文 参考訳(メタデータ) (2021-12-20T12:30:20Z) - Differentiable Network Pruning for Microcontrollers [14.864940447206871]
本稿では,畳み込みニューラルネットワークのための可変構造型ネットワークプルーニング法を提案する。
モデル固有のリソース使用量とパラメータ重要度フィードバックを統合し、高度に圧縮されかつ正確な分類モデルを得る。
論文 参考訳(メタデータ) (2021-10-15T20:26:15Z) - An Information Theory-inspired Strategy for Automatic Network Pruning [88.51235160841377]
深層畳み込みニューラルネットワークは、リソース制約のあるデバイスで圧縮されることがよく知られている。
既存のネットワークプルーニング手法の多くは、人的努力と禁忌な計算資源を必要とする。
本稿では,自動モデル圧縮のための情報理論に基づく戦略を提案する。
論文 参考訳(メタデータ) (2021-08-19T07:03:22Z) - A New Clustering-Based Technique for the Acceleration of Deep
Convolutional Networks [2.7393821783237184]
MCA(Model Compression and Acceleration)技術は、大規模な事前学習ネットワークをより小さなモデルに変換するために用いられる。
本稿では,採用したセントロイド/表現量を増やすクラスタリングに基づく手法を提案する。
これは、被雇用者に対して特別な構造を課すことによって達成され、これは、目の前の問題の特異性によって実現される。
論文 参考訳(メタデータ) (2021-07-19T18:22:07Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
オートエンコーダを用いた低ランクフィルタ共有技術(ALF)を提案する。
ALFは、ネットワークパラメータの70%、オペレーションの61%、実行時間の41%を削減し、精度の低下を最小限にしている。
論文 参考訳(メタデータ) (2020-07-27T09:01:22Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
シークエンシャルレコメンデーションシステム(SRS)は,ユーザの動的関心を捉え,高品質なレコメンデーションを生成する上で重要な技術となっている。
CpRecと呼ばれる圧縮されたシーケンシャルレコメンデーションフレームワークを提案する。
大規模なアブレーション研究により、提案したCpRecは実世界のSRSデータセットにおいて最大4$sim$8倍の圧縮速度を達成できることを示した。
論文 参考訳(メタデータ) (2020-04-21T08:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。