論文の概要: Improving exploration in policy gradient search: Application to symbolic
optimization
- arxiv url: http://arxiv.org/abs/2107.09158v1
- Date: Mon, 19 Jul 2021 21:11:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-21 15:08:26.060724
- Title: Improving exploration in policy gradient search: Application to symbolic
optimization
- Title(参考訳): 政策勾配探索における探索の改善:記号最適化への応用
- Authors: Mikel Landajuela Larma, Brenden K. Petersen, Soo K. Kim, Claudio P.
Santiago, Ruben Glatt, T. Nathan Mundhenk, Jacob F. Pettit, Daniel M. Faissol
- Abstract要約: 多くの機械学習戦略は、ニューラルネットワークを利用して数学記号の大きな空間を探索する。
従来の進化的アプローチとは対照的に、検索のコアでニューラルネットワークを使用することで、より高いレベルのシンボルパターンを学習することができる。
これらの手法は, 性能の向上, サンプル効率の向上, シンボル回帰の課題に対する解の複雑さの低減を図っている。
- 参考スコア(独自算出の注目度): 6.344988093245026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many machine learning strategies designed to automate mathematical tasks
leverage neural networks to search large combinatorial spaces of mathematical
symbols. In contrast to traditional evolutionary approaches, using a neural
network at the core of the search allows learning higher-level symbolic
patterns, providing an informed direction to guide the search. When no labeled
data is available, such networks can still be trained using reinforcement
learning. However, we demonstrate that this approach can suffer from an early
commitment phenomenon and from initialization bias, both of which limit
exploration. We present two exploration methods to tackle these issues,
building upon ideas of entropy regularization and distribution initialization.
We show that these techniques can improve the performance, increase sample
efficiency, and lower the complexity of solutions for the task of symbolic
regression.
- Abstract(参考訳): 数学的タスクを自動化するために設計された多くの機械学習戦略は、ニューラルネットワークを利用して数学記号の大きな組合せ空間を探索する。
従来の進化的アプローチとは対照的に、検索のコアにニューラルネットワークを使用することで、より高いレベルのシンボルパターンを学習し、検索を導くためのインフォームドな指示を与えることができる。
ラベル付きデータがない場合、このようなネットワークは強化学習を使用してトレーニングすることができる。
しかし、このアプローチは初期のコミットメント現象と初期化バイアスに苦しむ可能性があることを実証し、どちらも探索を制限する。
本稿では,エントロピー正規化と分布初期化という2つの考え方に基づいて,この問題に取り組むための探索手法を提案する。
これらの手法は, 性能の向上, サンプル効率の向上, シンボリック回帰の課題に対する解の複雑さを低減できることを示す。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
ニューラルネットワークの適応学習能力にアルゴリズムの構造的および規則に基づく推論を統合することを目的としている。
この論文は、この領域の研究に理論的および実践的な貢献を提供する。
論文 参考訳(メタデータ) (2024-02-21T12:16:51Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
我々はこれまで未利用であったプロセスの枠組みを活用することを提案する。
我々は、実際のニューロンスパイク列車に使用される神経科学技術を活用した、アクティベーション周波数のみに焦点をあてる。
各ネットワークにおけるアクティベーションパターンを記述するパラメータを導出し、アーキテクチャとトレーニングセット間で一貫した差異を明らかにする。
論文 参考訳(メタデータ) (2023-08-01T22:12:30Z) - Fortuitous Forgetting in Connectionist Networks [20.206607130719696]
我々は,ニューラルネットワークの学習軌跡を形成するための強力なパラダイムとして,"forget-and-relearn"を紹介した。
forget-and-relearnフレームワークは、画像分類と言語出現文学において、多くの既存の反復的トレーニングアルゴリズムを統合する。
我々は、この理解を活用して、よりターゲットを絞った忘れ操作を設計することで、既存のアルゴリズムを改善する。
論文 参考訳(メタデータ) (2022-02-01T00:15:58Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
現在の最先端のインクリメンタル学習手法は、従来の分類ネットワークにおける破滅的な忘れ方問題に取り組む。
ゼロショット変換クラス増分法(ZSTCI)と呼ばれる新しい組込みネットワークのクラス増分法を提案する。
さらに、ZSTCIを既存の正規化ベースのインクリメンタル学習手法と組み合わせることで、組み込みネットワークの性能をより向上させることができる。
論文 参考訳(メタデータ) (2020-12-31T08:21:37Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Supervised Learning with First-to-Spike Decoding in Multilayer Spiking
Neural Networks [0.0]
本稿では,多層スパイキングニューラルネットワークを学習して分類問題を解くための教師あり学習手法を提案する。
提案した学習規則は、隠れニューロンが発する複数のスパイクをサポートし、決定論的出力層によって生成された最初のスパイク応答に依存することにより安定である。
また、入力データのコンパクト表現を形成するために、いくつかの異なるスパイクベースの符号化戦略についても検討する。
論文 参考訳(メタデータ) (2020-08-16T15:34:48Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z) - Learning the Travelling Salesperson Problem Requires Rethinking
Generalization [9.176056742068813]
トラベリングセールスパーソン問題(TSP)のようなグラフ最適化問題に対するニューラルネットワークソルバのエンドツーエンドトレーニングは近年,関心が高まっている。
最先端の学習駆動アプローチは、自明に小さなサイズで訓練された場合、古典的な解法と密接に関係するが、実践的な規模で学習ポリシーを大規模に一般化することはできない。
この研究は、トレーニングで見られるものよりも大きいインスタンスへの一般化を促進する、原則化されたバイアス、モデルアーキテクチャ、学習アルゴリズムを特定するために、最近の論文を統一するエンドツーエンドのニューラルネットワークパイプラインを提示している。
論文 参考訳(メタデータ) (2020-06-12T10:14:15Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
基本数学的操作をビルディングブロックとして使うだけで,完全な機械学習アルゴリズムを自動的に発見できることが示される。
汎用的な検索空間を通じて人間のバイアスを大幅に低減する新しいフレームワークを導入することでこれを実証する。
機械学習アルゴリズムをゼロから発見する上で、これらの予備的な成功は、この分野における有望な新しい方向性を示していると信じている。
論文 参考訳(メタデータ) (2020-03-06T19:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。