論文の概要: Learning Efficiency Meets Symmetry Breaking
- arxiv url: http://arxiv.org/abs/2504.19738v1
- Date: Mon, 28 Apr 2025 12:33:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.431348
- Title: Learning Efficiency Meets Symmetry Breaking
- Title(参考訳): 対称性を破る学習効率
- Authors: Yingbin Bai, Sylvie Thiebaux, Felipe Trevizan,
- Abstract要約: 本稿では,2つのプルーニング手法とともに,学習効率と対称性の検出能力を関連づけた計画問題のグラフ表現を提案する。
これらのテクニックをFast Downwardに統合することで、最新のIPC学習トラックデータセット上でLAMAよりも初めて成功している。
- 参考スコア(独自算出の注目度): 2.6140850422934063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning-based planners leveraging Graph Neural Networks can learn search guidance applicable to large search spaces, yet their potential to address symmetries remains largely unexplored. In this paper, we introduce a graph representation of planning problems allying learning efficiency with the ability to detect symmetries, along with two pruning methods, action pruning and state pruning, designed to manage symmetries during search. The integration of these techniques into Fast Downward achieves a first-time success over LAMA on the latest IPC learning track dataset. Code is released at: https://github.com/bybeye/Distincter.
- Abstract(参考訳): グラフニューラルネットワークを利用した学習ベースのプランナーは、大規模な検索空間に適用可能な検索ガイダンスを学習することができるが、その対称性に対処する可能性はほとんど探索されていない。
本稿では,学習効率と対称性検出能力と,探索中に対称性を管理するために設計された2つのプルーニング手法,アクションプルーニングと状態プルーニングを併用した計画問題のグラフ表現を提案する。
これらのテクニックをFast Downwardに統合することで、最新のIPC学習トラックデータセット上でLAMAよりも初めて成功している。
コードは、https://github.com/bybeye/Distincter.comで公開されている。
関連論文リスト
- Scalable Deep Metric Learning on Attributed Graphs [10.092560681589578]
本研究では,深度測定と非偏差学習を併用したグラフ埋め込み手法を提案する。
マルチクラス損失関数に基づいて、半教師なし学習のためのDMTと教師なしケースのためのDMAT-iという2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-20T03:34:31Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Efficiently Learning the Graph for Semi-supervised Learning [4.518012967046983]
共役勾配法を用いてスパース族から最良のグラフを効率的に学習する方法を示す。
我々の手法は、軽度な滑らかさの仮定の下で、オンラインのサブ線形後悔でグラフを効率的に学習するためにも利用できる。
提案手法を実装し,ベンチマークデータセット上の学習グラフを用いた半教師付き学習の先行研究に対して,大幅な(sim$10-100x)スピードアップを示す。
論文 参考訳(メタデータ) (2023-06-12T13:22:06Z) - LieGG: Studying Learned Lie Group Generators [1.5293427903448025]
ニューラルネットワークに組み込まれた対称性は、データを保存して学習することで、幅広いタスクに対して非常に有益であるように思える。
本稿では,ニューラルネットワークが学習した対称性を抽出し,ネットワークの不変度を評価する手法を提案する。
論文 参考訳(メタデータ) (2022-10-09T20:42:37Z) - Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and
Heuristic Rule-based Methods for Object Manipulation [118.27432851053335]
本稿では,SAPIEN ManiSkill Challenge 2021: No Interaction Trackにおいて,以下の2つのトラックを対象としたシステムの概要と比較分析を行った。
No Interactionは、事前に収集された実証軌道からの学習ポリシーのターゲットを追跡する。
このトラックでは,タスクを一連のサブタスクに分解することで,高品質なオブジェクト操作をトリガするHuristic Rule-based Method (HRM) を設計する。
各サブタスクに対して、ロボットアームに適用可能なアクションを予測するために、単純なルールベースの制御戦略が採用されている。
論文 参考訳(メタデータ) (2022-06-13T16:20:42Z) - SetMargin Loss applied to Deep Keystroke Biometrics with Circle Packing
Interpretation [67.0845003374569]
本研究は,新しい距離距離学習法(DML)に基づくキーストロークバイオメトリックスのための新しい深層学習手法を提案する。
提案手法の有効性を実験的に証明し, キーストロークの生体認証を78,000名の被験者に対して行った。
論文 参考訳(メタデータ) (2021-09-02T13:26:57Z) - Improving exploration in policy gradient search: Application to symbolic
optimization [6.344988093245026]
多くの機械学習戦略は、ニューラルネットワークを利用して数学記号の大きな空間を探索する。
従来の進化的アプローチとは対照的に、検索のコアでニューラルネットワークを使用することで、より高いレベルのシンボルパターンを学習することができる。
これらの手法は, 性能の向上, サンプル効率の向上, シンボル回帰の課題に対する解の複雑さの低減を図っている。
論文 参考訳(メタデータ) (2021-07-19T21:11:07Z) - Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach [7.752212921476838]
表現学習における対称空間の体系的利用を提案する。
本研究では,組込み解析ツールを開発し,データセットの構造的特性を推定する。
提案手法は, 各種合成および実世界のデータセット上でのグラフ再構成タスクにおいて, 競合的ベースラインよりも優れる。
論文 参考訳(メタデータ) (2021-06-09T09:33:33Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
フレーム間のデータアソシエーションは、Multiple Object Tracking(MOT)タスクの中核にある。
既存の手法は、主にトラックレットとフレーム内検出の間のコンテキスト情報を無視する。
そこで本研究では,学習可能なグラフマッチング手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T08:58:45Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
グラフ表現学習は、大規模に高品質な候補探索をサポートすることに多くの注目を集めている。
ユーザ・イテム相互作用ネットワークにおけるオブジェクトの埋め込みベクトルの学習の有効性にもかかわらず、連続的な埋め込み空間におけるユーザの好みを推測する計算コストは膨大である。
連続的かつ離散的なコードとを協調的に学習するための,単純かつ効果的な離散表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-04T06:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。