Hybrid neural network reduced order modelling for turbulent flows with
geometric parameters
- URL: http://arxiv.org/abs/2107.09591v1
- Date: Tue, 20 Jul 2021 16:06:18 GMT
- Title: Hybrid neural network reduced order modelling for turbulent flows with
geometric parameters
- Authors: Matteo Zancanaro, Markus Mrosek, Giovanni Stabile, Carsten Othmer,
Gianluigi Rozza
- Abstract summary: This paper introduces a new technique mixing up a classical Galerkin-projection approach together with a data-driven method to obtain a versatile and accurate algorithm for the resolution of geometrically parametrized incompressible turbulent Navier-Stokes problems.
The effectiveness of this procedure is demonstrated on two different test cases: a classical academic back step problem and a shape deformation Ahmed body application.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometrically parametrized Partial Differential Equations are nowadays widely
used in many different fields as, for example, shape optimization processes or
patient specific surgery studies. The focus of this work is on some advances
for this topic, capable of increasing the accuracy with respect to previous
approaches while relying on a high cost-benefit ratio performance. The main
scope of this paper is the introduction of a new technique mixing up a
classical Galerkin-projection approach together with a data-driven method to
obtain a versatile and accurate algorithm for the resolution of geometrically
parametrized incompressible turbulent Navier-Stokes problems. The effectiveness
of this procedure is demonstrated on two different test cases: a classical
academic back step problem and a shape deformation Ahmed body application. The
results show into details the properties of the architecture we developed while
exposing possible future perspectives for this work.
Related papers
- A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
This work introduces a new approach for accelerating the numerical analysis of time-domain partial differential equations (PDEs) governing complex physical systems.
The methodology is based on a combination of a classical reduced-order modeling (ROM) framework and recently-parametric Graph Neural Networks (GNNs)
arXiv Detail & Related papers (2024-06-03T08:51:25Z) - A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
We study the case of non-differentiable activation functions, such as ReLU.
Two recent works introduced a geometric framework to study neural networks.
We illustrate our findings with some numerical experiments on classification of images and thermodynamic problems.
arXiv Detail & Related papers (2024-04-09T08:11:46Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks [68.8204255655161]
We introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization.
The results of our physics-aware CNN are compared to a state-of-the-art data-based approach.
arXiv Detail & Related papers (2023-08-04T05:09:06Z) - Neural network analysis of neutron and X-ray reflectivity data:
Incorporating prior knowledge for tackling the phase problem [141.5628276096321]
We present an approach that utilizes prior knowledge to regularize the training process over larger parameter spaces.
We demonstrate the effectiveness of our method in various scenarios, including multilayer structures with box model parameterization.
In contrast to previous methods, our approach scales favorably when increasing the complexity of the inverse problem.
arXiv Detail & Related papers (2023-06-28T11:15:53Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A Survey of Geometric Optimization for Deep Learning: From Euclidean
Space to Riemannian Manifold [7.737713458418288]
Deep Learning (DL) has achieved success in complex Artificial Intelligence (AI) tasks, but it suffers from various notorious problems.
This article presents a comprehensive survey of applying geometric optimization in DL.
It investigates the application of geometric optimization in different DL networks in various AI tasks, e.g., convolution neural network, recurrent neural network, transfer learning, and optimal transport.
arXiv Detail & Related papers (2023-02-16T10:50:15Z) - Accelerating numerical methods by gradient-based meta-solving [15.90188271828615]
In science and engineering applications, it is often required to solve similar computational problems repeatedly.
We propose a gradient-based algorithm to solve them in a unified way.
We demonstrate the performance and versatility of our method through theoretical analysis and numerical experiments.
arXiv Detail & Related papers (2022-06-17T07:31:18Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
We propose a novel learnable general-purpose regularizer exploiting recent architectural design patterns from deep learning.
We show state-of-the-art performance for classical image restoration and medical image reconstruction problems.
arXiv Detail & Related papers (2020-01-14T19:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.