Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks
- URL: http://arxiv.org/abs/2308.02137v1
- Date: Fri, 4 Aug 2023 05:09:06 GMT
- Title: Learning the solution operator of two-dimensional incompressible
Navier-Stokes equations using physics-aware convolutional neural networks
- Authors: Viktor Grimm, Alexander Heinlein, Axel Klawonn
- Abstract summary: We introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization.
The results of our physics-aware CNN are compared to a state-of-the-art data-based approach.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the concept of introducing physics to machine learning has
become widely popular. Most physics-inclusive ML-techniques however are still
limited to a single geometry or a set of parametrizable geometries. Thus, there
remains the need to train a new model for a new geometry, even if it is only
slightly modified. With this work we introduce a technique with which it is
possible to learn approximate solutions to the steady-state Navier--Stokes
equations in varying geometries without the need of parametrization. This
technique is based on a combination of a U-Net-like CNN and well established
discretization methods from the field of the finite difference method.The
results of our physics-aware CNN are compared to a state-of-the-art data-based
approach. Additionally, it is also shown how our approach performs when
combined with the data-based approach.
Related papers
- Physics-informed neural networks for transformed geometries and
manifolds [0.0]
We propose a novel method for integrating geometric transformations within PINNs to robustly accommodate geometric variations.
We demonstrate the enhanced flexibility over traditional PINNs, especially under geometric variations.
The proposed framework presents an outlook for training deep neural operators over parametrized geometries.
arXiv Detail & Related papers (2023-11-27T15:47:33Z) - Physics-Informed Graph Convolutional Networks: Towards a generalized
framework for complex geometries [0.0]
We justify the use of graph neural networks for solving partial differential equations.
An alternative procedure is proposed, by combining classical numerical solvers and the Physics-Informed framework.
We propose an implementation of this approach, that we test on a three-dimensional problem on an irregular geometry.
arXiv Detail & Related papers (2023-10-20T09:46:12Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physical Gradients for Deep Learning [101.36788327318669]
We find that state-of-the-art training techniques are not well-suited to many problems that involve physical processes.
We propose a novel hybrid training approach that combines higher-order optimization methods with machine learning techniques.
arXiv Detail & Related papers (2021-09-30T12:14:31Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
We propose a solution to simulate hyper-elastic materials using a data-driven approach.
A neural network is trained to learn the non-linear relationship between boundary conditions and the resulting displacement field.
The results show that our network architecture trained with a limited amount of data can predict the displacement field in less than a millisecond.
arXiv Detail & Related papers (2021-09-17T12:15:47Z) - Hybrid neural network reduced order modelling for turbulent flows with
geometric parameters [0.0]
This paper introduces a new technique mixing up a classical Galerkin-projection approach together with a data-driven method to obtain a versatile and accurate algorithm for the resolution of geometrically parametrized incompressible turbulent Navier-Stokes problems.
The effectiveness of this procedure is demonstrated on two different test cases: a classical academic back step problem and a shape deformation Ahmed body application.
arXiv Detail & Related papers (2021-07-20T16:06:18Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
We present a new hybrid physics-based machine-learning approach to reservoir modeling.
The methodology relies on a series of deep adversarial neural network architecture with physics-based regularization.
The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms.
arXiv Detail & Related papers (2020-01-15T08:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.