論文の概要: Human Perception of Audio Deepfakes
- arxiv url: http://arxiv.org/abs/2107.09667v7
- Date: Tue, 27 Aug 2024 15:19:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 20:36:52.065506
- Title: Human Perception of Audio Deepfakes
- Title(参考訳): オーディオディープフェイクの人間の知覚
- Authors: Nicolas M. Müller, Karla Pizzi, Jennifer Williams,
- Abstract要約: 音声のディープフェイクを検出するための人間と機械の能力を比較する。
我々の実験では、472人のユニークなユーザーが14912ラウンドで最先端のAIディープフェイク検出アルゴリズムと競合した。
人間とディープフェイク検出アルゴリズムは類似の強みと弱みを共有しており、どちらも特定の種類の攻撃を検出するのに苦労している。
- 参考スコア(独自算出の注目度): 6.40753664615445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent emergence of deepfakes has brought manipulated and generated content to the forefront of machine learning research. Automatic detection of deepfakes has seen many new machine learning techniques, however, human detection capabilities are far less explored. In this paper, we present results from comparing the abilities of humans and machines for detecting audio deepfakes used to imitate someone's voice. For this, we use a web-based application framework formulated as a game. Participants were asked to distinguish between real and fake audio samples. In our experiment, 472 unique users competed against a state-of-the-art AI deepfake detection algorithm for 14912 total of rounds of the game. We find that humans and deepfake detection algorithms share similar strengths and weaknesses, both struggling to detect certain types of attacks. This is in contrast to the superhuman performance of AI in many application areas such as object detection or face recognition. Concerning human success factors, we find that IT professionals have no advantage over non-professionals but native speakers have an advantage over non-native speakers. Additionally, we find that older participants tend to be more susceptible than younger ones. These insights may be helpful when designing future cybersecurity training for humans as well as developing better detection algorithms.
- Abstract(参考訳): 近年のディープフェイクの出現は、機械学習研究の最前線に操作されたコンテンツと生成されたコンテンツをもたらした。
ディープフェイクの自動検出は多くの新しい機械学習技術が見られたが、人間の検出能力ははるかに少ない。
本稿では,人の声を模倣する音声のディープフェイクを検出するために,人間と機械の能力を比較する結果を提案する。
そのために、ゲームとして定式化されたWebベースのアプリケーションフレームワークを使用します。
参加者は、実際のオーディオサンプルと偽のオーディオサンプルを区別するよう求められた。
我々の実験では、472人のユニークなユーザーが14912ラウンドで最先端のAIディープフェイク検出アルゴリズムと競合した。
人間とディープフェイク検出アルゴリズムは類似の強みと弱みを共有しており、どちらも特定の種類の攻撃を検出するのに苦労している。
これは、物体検出や顔認識など、多くの応用分野におけるAIの超人的パフォーマンスとは対照的である。
人間の成功要因に関しては、IT専門家は非専門職に勝るものはありませんが、ネイティブスピーカーは非ネイティブスピーカーに勝るものと言えます。
さらに,高齢者の方が若年者より感受性が高い傾向がみられた。
これらの洞察は、人間のための将来のサイバーセキュリティトレーニングを設計するだけでなく、より良い検出アルゴリズムを開発する際にも役立つかもしれない。
関連論文リスト
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
被害者や人物のディープフェイクは、脅迫、ゆがみ、金融詐欺の詐欺師によって使用される。
本研究では,映像中の顔の存在の動的度を特徴付ける幾何学的フェイクネス機能(GFF)を提案する。
我々は、ビデオに同時に存在する複数の顔でビデオを分析するために、我々のアプローチを採用している。
論文 参考訳(メタデータ) (2024-10-10T13:10:34Z) - Unmasking Illusions: Understanding Human Perception of Audiovisual Deepfakes [49.81915942821647]
本研究は,ディープフェイク映像を主観的研究により識別する人間の能力を評価することを目的とする。
人間の観察者を5つの最先端オーディオ視覚深度検出モデルと比較することにより,その知見を提示する。
同じ40の動画で評価すると、すべてのAIモデルは人間より優れていることが分かりました。
論文 参考訳(メタデータ) (2024-05-07T07:57:15Z) - Can deepfakes be created by novice users? [15.014868583616504]
先進的なコンピュータスキルを持つ参加者がDeepfakesを作れるかどうかを理解するために,ユーザスタディを実施している。
23.1%の参加者が音声とビデオで完全なDeepfakesを作成した。
私たちは、Deepfake検出ソフトウェアツールと人間の検査者に基づく分析を使用して、成功したDeepfake出力を偽、疑わしい、あるいは本物に分類します。
論文 参考訳(メタデータ) (2023-04-28T00:32:24Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
人工知能(AI)技術の進歩が偽写真を生み出すのではないかという懸念が高まっている。
本研究の目的は、最先端のAI生成視覚コンテンツを識別するためのエージェントを包括的に評価することである。
論文 参考訳(メタデータ) (2023-04-25T17:51:59Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Deepfake Caricatures: Amplifying attention to artifacts increases
deepfake detection by humans and machines [17.7858728343141]
ディープフェイクは誤報を燃やすことでデジタルウェルビーイングに深刻な脅威をもたらす。
ディープフェイクビデオのアーティファクトを増幅するフレームワークを導入し、人々がより検出できるようにする。
本稿では,ビデオアーティファクトをハイライトするアテンションマップを作成するために,人間の反応をトレーニングする,新しい半教師付きアーティファクトアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2022-06-01T14:43:49Z) - Audio-Visual Person-of-Interest DeepFake Detection [77.04789677645682]
本研究の目的は、現実世界で遭遇する様々な操作方法やシナリオに対処できるディープフェイク検出器を提案することである。
我々は、対照的な学習パラダイムを活用して、各アイデンティティに対して最も識別しやすい、移動面と音声セグメントの埋め込みを学習する。
本手法は,シングルモダリティ(オーディオのみ,ビデオのみ)とマルチモダリティ(オーディオビデオ)の両方を検出でき,低品質・低画質ビデオに対して堅牢である。
論文 参考訳(メタデータ) (2022-04-06T20:51:40Z) - Watch Those Words: Video Falsification Detection Using Word-Conditioned
Facial Motion [82.06128362686445]
本稿では,安価なディープフェイクと視覚的に説得力のあるディープフェイクの両方を扱うためのマルチモーダルな意味法医学的アプローチを提案する。
帰属という概念を利用して、ある話者と他の話者を区別する個人固有の生体パターンを学習する。
既存の個人固有のアプローチとは異なり、この手法は口唇の操作に焦点を当てた攻撃にも有効である。
論文 参考訳(メタデータ) (2021-12-21T01:57:04Z) - Evaluation of an Audio-Video Multimodal Deepfake Dataset using Unimodal
and Multimodal Detectors [18.862258543488355]
ディープフェイクはセキュリティとプライバシーの問題を引き起こす可能性がある。
ディープラーニング技術を使って人間の声をクローンする新しい領域も登場しつつある。
優れたディープフェイク検出器を開発するには、複数のモードのディープフェイクを検出する検出器が必要である。
論文 参考訳(メタデータ) (2021-09-07T11:00:20Z) - Deepfake detection: humans vs. machines [4.485016243130348]
クラウドソーシングのようなシナリオで実施した主観的研究で,ビデオがディープフェイクであるか否かを人間が確認することがいかに困難であるかを体系的に評価する。
各ビデオについて、簡単な質問は「ビデオの中の人物の顔は偽物か?」というものだった。
この評価は、人間の知覚が機械の知覚とは大きく異なるが、成功しても異なる方法ではディープフェイクに騙されることを示した。
論文 参考訳(メタデータ) (2020-09-07T15:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。