論文の概要: Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images
- arxiv url: http://arxiv.org/abs/2304.13023v3
- Date: Fri, 22 Sep 2023 18:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 03:02:06.515241
- Title: Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images
- Title(参考訳): 見ることは必ずしも信じるものではない:ai生成画像の人間とモデル知覚のベンチマーク
- Authors: Zeyu Lu, Di Huang, Lei Bai, Jingjing Qu, Chengyue Wu, Xihui Liu, Wanli
Ouyang
- Abstract要約: 人工知能(AI)技術の進歩が偽写真を生み出すのではないかという懸念が高まっている。
本研究の目的は、最先端のAI生成視覚コンテンツを識別するためのエージェントを包括的に評価することである。
- 参考スコア(独自算出の注目度): 66.20578637253831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photos serve as a way for humans to record what they experience in their
daily lives, and they are often regarded as trustworthy sources of information.
However, there is a growing concern that the advancement of artificial
intelligence (AI) technology may produce fake photos, which can create
confusion and diminish trust in photographs. This study aims to comprehensively
evaluate agents for distinguishing state-of-the-art AI-generated visual
content. Our study benchmarks both human capability and cutting-edge fake image
detection AI algorithms, using a newly collected large-scale fake image dataset
Fake2M. In our human perception evaluation, titled HPBench, we discovered that
humans struggle significantly to distinguish real photos from AI-generated
ones, with a misclassification rate of 38.7%. Along with this, we conduct the
model capability of AI-Generated images detection evaluation MPBench and the
top-performing model from MPBench achieves a 13% failure rate under the same
setting used in the human evaluation. We hope that our study can raise
awareness of the potential risks of AI-generated images and facilitate further
research to prevent the spread of false information. More information can refer
to https://github.com/Inf-imagine/Sentry.
- Abstract(参考訳): 写真は、人間が日常生活で何を経験したかを記録するための手段であり、しばしば信頼できる情報源と見なされる。
しかし、人工知能(AI)技術の進歩が偽の写真を生み出し、写真に対する混乱と信頼の低下を引き起こすのではないかという懸念が高まっている。
本研究の目的は、最先端のAI生成視覚コンテンツを識別するためのエージェントを包括的に評価することである。
我々の研究は、大規模なフェイク画像データセットFake2Mを用いて、人間の能力と最先端のフェイク画像検出AIアルゴリズムをベンチマークした。
HPBenchと題された人間の知覚評価では、人間が実際の写真をAI生成したものと区別するのに苦労し、誤分類率は38.7%であることがわかった。
これに伴い,ai生成画像検出評価mpbenchとmpbenchのtop-performingモデルのモデル能力は,人間評価と同じ条件下で13%の故障率を達成する。
我々の研究は、AI生成画像の潜在的なリスクに対する認識を高め、偽情報の拡散を防止するためにさらなる研究を促進することを願っている。
詳細はhttps://github.com/inf-imagine/sentryを参照。
関連論文リスト
- Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies [58.11545090128854]
本稿では、写真顔画像から純粋にカメラ固有の特徴と顔特有の特徴の自己教師付き学習を活用することで、AI生成顔の異常検出手法について述べる。
提案手法の成功は,特徴抽出器を訓練して4つの通常交換可能な画像ファイルフォーマット(EXIF)をランク付けし,人工的に操作された顔画像の分類を行うプリテキストタスクを設計することにある。
論文 参考訳(メタデータ) (2025-01-04T06:23:24Z) - Human vs. AI: A Novel Benchmark and a Comparative Study on the Detection of Generated Images and the Impact of Prompts [5.222694057785324]
本研究は,偽画像の検出性に対するプロンプトの細部レベルの影響について検討する。
私たちはCOCOデータセットの実際の写真とSDXLとFooocusで生成された画像からなる新しいデータセットCOCOXGENを作成します。
200人の被験者を対象に行ったユーザスタディでは,より長く,より詳細なプロンプトで生成された画像は,短いプロンプトで生成された画像よりもはるかに容易に検出できることが示されている。
論文 参考訳(メタデータ) (2024-12-12T20:37:52Z) - Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
本稿では,誤用と関連するリスクを軽減するために,予測不確実性を利用してAI生成画像を検出する新しい手法を提案する。
この動機は、自然画像とAI生成画像の分布差に関する基本的な仮定から生じる。
本稿では,AI生成画像の検出スコアとして,大規模事前学習モデルを用いて不確実性を計算することを提案する。
論文 参考訳(メタデータ) (2024-12-08T11:32:25Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - Analysis of Human Perception in Distinguishing Real and AI-Generated Faces: An Eye-Tracking Based Study [6.661332913985627]
本研究では,人間がどのように実像と偽像を知覚し,区別するかを検討する。
StyleGAN-3生成画像を解析したところ、参加者は76.80%の平均精度で偽の顔と現実を区別できることがわかった。
論文 参考訳(メタデータ) (2024-09-23T19:34:30Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
我々はAI生成画像を検出するAI生成画像検出装置(AI生成画像検出装置)を提案する。
AIDEは最先端の手法を+3.5%、+4.6%改善した。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery [0.0]
AI生成画像を検出するツールを開発することが重要である。
本稿では、画像とフーリエ周波数分解の両方を入力として扱うデュアルブランチニューラルネットワークアーキテクチャを提案する。
提案モデルでは,CIFAKEデータセットの精度が94%向上し,従来のML手法やCNNよりも優れていた。
論文 参考訳(メタデータ) (2024-06-19T16:42:04Z) - Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images [67.18010640829682]
我々は,AI生成画像がテキスト画像検索モデルに目に見えない関連性バイアスをもたらすことを示す。
検索モデルのトレーニングデータにAI生成画像を含めると、目に見えない関連性バイアスが増す。
本研究では,目に見えない関連バイアスを軽減するための効果的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:22:58Z) - The Value of AI Guidance in Human Examination of Synthetically-Generated
Faces [4.144518961834414]
我々は,ヒト誘導型顔検出装置が,合成画像検出のタスクにおいて,熟練者以外の操作者を支援することができるかどうかを検討する。
我々は1,560名以上の被験者を対象に大規模な実験を行った。
人間の誘導で訓練されたモデルは、伝統的にクロスエントロピー損失を用いて訓練されたモデルと比較して、人間の顔画像の検査により良いサポートを提供する。
論文 参考訳(メタデータ) (2022-08-22T18:45:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。