Quantum Measurement Classification with Qudits
- URL: http://arxiv.org/abs/2107.09781v1
- Date: Tue, 20 Jul 2021 21:54:14 GMT
- Title: Quantum Measurement Classification with Qudits
- Authors: Diego H. Useche, Andres Giraldo-Carvajal, Hernan M. Zuluaga-Bucheli,
Jose A. Jaramillo-Villegas, Fabio A. Gonz\'alez
- Abstract summary: We show that the proposed quantum protocols allow to estimate probability density functions and to make predictions in a supervised learning manner.
Results show that the proposed method is a viable strategy to implement supervised classification and density estimation in a high-dimensional quantum computer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a hybrid classical-quantum program for density estimation
and supervised classification. The program is implemented as a quantum circuit
in a high-dimensional quantum computer simulator. We show that the proposed
quantum protocols allow to estimate probability density functions and to make
predictions in a supervised learning manner. This model can be generalized to
find expected values of density matrices in high-dimensional quantum computers.
Experiments on various data sets are presented. Results show that the proposed
method is a viable strategy to implement supervised classification and density
estimation in a high-dimensional quantum computer.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - MEMO-QCD: Quantum Density Estimation through Memetic Optimisation for Quantum Circuit Design [3.046689922445082]
This paper presents a strategy for efficient quantum circuit design for density estimation.
The strategy is based on a quantum-inspired algorithm for density estimation and a circuit optimisation routine based on memetic algorithms.
arXiv Detail & Related papers (2024-06-12T18:54:22Z) - Quantum Next Generation Reservoir Computing: An Efficient Quantum
Algorithm for Forecasting Quantum Dynamics [1.9260081982051918]
We show that NG-RC can accurately predict full many-body quantum dynamics in both integrable and chaotic systems.
We propose an end-to-end quantum algorithm for many-body quantum dynamics forecasting with a quantum computational speedup via the block-encoding technique.
arXiv Detail & Related papers (2023-08-28T00:34:40Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Optimisation-free Classification and Density Estimation with Quantum
Circuits [0.0]
We demonstrate the implementation of a novel machine learning framework for probability density estimation and classification using quantum circuits.
The framework maps a training data set or a single data sample to the quantum state of a physical system through quantum feature maps.
We discuss a variational quantum circuit approach that could leverage quantum advantage for our framework.
arXiv Detail & Related papers (2022-03-28T02:40:24Z) - Quantum density estimation with density matrices: Application to quantum anomaly detection [8.893420660481734]
Density estimation is a central task in statistics and machine learning.
We present a novel quantum-classical density matrix density estimation model, called Q-DEMDE.
We also present an application of the method for quantum-classical anomaly detection.
arXiv Detail & Related papers (2022-01-24T23:40:00Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum State Discrimination for Supervised Classification [0.5772546394254112]
We show how quantum state discrimination can represent a useful tool to address the standard classification problem in machine learning.
Previous studies have shown that the optimal quantum measurement theory can inspire a new binary classification algorithm.
We propose a model for arbitrary multiclass classification inspired by quantum state discrimination.
arXiv Detail & Related papers (2021-04-02T10:22:59Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.