Quantum density estimation with density matrices: Application to quantum anomaly detection
- URL: http://arxiv.org/abs/2201.10006v5
- Date: Mon, 18 Mar 2024 11:20:37 GMT
- Title: Quantum density estimation with density matrices: Application to quantum anomaly detection
- Authors: Diego H. Useche, Oscar A. Bustos-Brinez, Joseph A. Gallego-Mejia, Fabio A. González,
- Abstract summary: Density estimation is a central task in statistics and machine learning.
We present a novel quantum-classical density matrix density estimation model, called Q-DEMDE.
We also present an application of the method for quantum-classical anomaly detection.
- Score: 8.893420660481734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Density estimation is a central task in statistics and machine learning. This problem aims to determine the underlying probability density function that best aligns with an observed data set. Some of its applications include statistical inference, unsupervised learning, and anomaly detection. Despite its relevance, few works have explored the application of quantum computing to density estimation. In this article, we present a novel quantum-classical density matrix density estimation model, called Q-DEMDE, based on the expected values of density matrices and a novel quantum embedding called quantum Fourier features. The method uses quantum hardware to build probability distributions of training data via mixed quantum states. As a core subroutine, we propose a new algorithm to estimate the expected value of a mixed density matrix from its spectral decomposition on a quantum computer. In addition, we present an application of the method for quantum-classical anomaly detection. We evaluated the density estimation model with quantum random and quantum adaptive Fourier features on different data sets on a quantum simulator and a real quantum computer. An important result of this work is to show that it is possible to perform density estimation and anomaly detection with high performance on present-day quantum computers.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - MEMO-QCD: Quantum Density Estimation through Memetic Optimisation for Quantum Circuit Design [3.046689922445082]
This paper presents a strategy for efficient quantum circuit design for density estimation.
The strategy is based on a quantum-inspired algorithm for density estimation and a circuit optimisation routine based on memetic algorithms.
arXiv Detail & Related papers (2024-06-12T18:54:22Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Determining probability density functions with adiabatic quantum
computing [0.0]
A reliable determination of probability density functions from data samples is still a relevant topic in scientific applications.
We define a classical-to-quantum data embedding procedure which maps the empirical cumulative distribution function of the sample into time dependent Hamiltonian.
The obtained Hamiltonian is then projected into a quantum circuit using the time evolution operator.
arXiv Detail & Related papers (2023-03-20T18:00:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantum Measurement Classification with Qudits [0.0]
We show that the proposed quantum protocols allow to estimate probability density functions and to make predictions in a supervised learning manner.
Results show that the proposed method is a viable strategy to implement supervised classification and density estimation in a high-dimensional quantum computer.
arXiv Detail & Related papers (2021-07-20T21:54:14Z) - Quantum Fisher information from randomized measurements [0.0]
The quantum Fisher information (QFI) is a fundamental quantity of interest in many areas.
We use measurements of the density matrix to construct lower bounds that converge to the QFI.
We present two examples of applications of the method in quantum systems made of coupled qubits and collective spins.
arXiv Detail & Related papers (2021-05-27T14:16:14Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
Current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices.
Quantum tomography tries to reconstruct a quantum system's density matrix by a complete set of observables.
We propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables.
arXiv Detail & Related papers (2020-09-02T04:39:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.