論文の概要: High-dimensional Multivariate Time Series Forecasting in IoT
Applications using Embedding Non-stationary Fuzzy Time Series
- arxiv url: http://arxiv.org/abs/2107.09785v1
- Date: Tue, 20 Jul 2021 22:00:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-22 14:17:49.509275
- Title: High-dimensional Multivariate Time Series Forecasting in IoT
Applications using Embedding Non-stationary Fuzzy Time Series
- Title(参考訳): 非定常ファジィ時系列埋め込みを用いたIoTアプリケーションにおける高次元多変量時系列予測
- Authors: Hugo Vinicius Bitencourt and Frederico Gadelha Guimar\~aes
- Abstract要約: Fuzzy Time Series (FTS) モデルは、実装が容易で高精度なデータ駆動非パラメトリックモデルとして際立っている。
本稿では,従来の高次元データを低次元埋め込み空間に投影することにより,高次元非定常時系列を扱う新しい手法を提案する。
本モデルでは,変動の98%を説明でき,RMSEの11.52%,MAEの2.68%,MAPEの2.91%に達する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In Internet of things (IoT), data is continuously recorded from different
data sources and devices can suffer faults in their embedded electronics, thus
leading to a high-dimensional data sets and concept drift events. Therefore,
methods that are capable of high-dimensional non-stationary time series are of
great value in IoT applications. Fuzzy Time Series (FTS) models stand out as
data-driven non-parametric models of easy implementation and high accuracy.
Unfortunately, FTS encounters difficulties when dealing with data sets of many
variables and scenarios with concept drift. We present a new approach to handle
high-dimensional non-stationary time series, by projecting the original
high-dimensional data into a low dimensional embedding space and using FTS
approach. Combining these techniques enables a better representation of the
complex content of non-stationary multivariate time series and accurate
forecasts. Our model is able to explain 98% of the variance and reach 11.52% of
RMSE, 2.68% of MAE and 2.91% of MAPE.
- Abstract(参考訳): モノのインターネット(IoT)では、異なるデータソースからデータが継続的に記録され、デバイスが組み込みエレクトロニクスに障害を負う可能性があるため、高次元データセットとコンセプトドリフトイベントが発生する。
したがって、高次元の非定常時系列の手法はIoTアプリケーションにおいて大きな価値を持つ。
Fuzzy Time Series (FTS) モデルは、実装が容易で高精度なデータ駆動非パラメトリックモデルとして際立っている。
残念ながら、FTSは、多くの変数やシナリオのデータセットをコンセプトドリフトで扱う際に困難に直面する。
本稿では,従来の高次元データを低次元埋め込み空間に投影し,FTSアプローチを用いて,高次元非定常時系列を扱う新しい手法を提案する。
これらの手法を組み合わせることで、非定常多変量時系列の複雑な内容の表現と正確な予測が可能になる。
本モデルでは,変動の98%を説明でき,RMSEの11.52%,MAEの2.68%,MAPEの2.91%に達する。
関連論文リスト
- FM-TS: Flow Matching for Time Series Generation [71.31148785577085]
本稿では、時系列生成のための修正フローマッチングベースのフレームワークFM-TSを紹介する。
FM-TSは、トレーニングと推論の点でより効率的である。
我々は、太陽予測とMuJoCo計算タスクにおいて優れた性能を達成した。
論文 参考訳(メタデータ) (2024-11-12T03:03:23Z) - TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [31.10683149519954]
本稿では,時系列予測モデルTimeSieveを提案する。
提案手法では、ウェーブレット変換を用いて時系列データを前処理し、マルチスケールの特徴を効果的にキャプチャする。
本研究は,時系列予測における課題に対処するためのアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-07T15:58:12Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
本研究では,階層化されたTime2vec埋め込み,動的グラフCNN,Transformerを統合し,グローバルかつ局所的な空間時間情報を抽出する新たな異常検出手法EdgeConvFormerを提案する。
実験により、EdgeConvFormerは、多変量時系列データから時空間モデリングを学習し、異なるスケールの多くの実世界のデータセットに対する最先端のアプローチよりも優れた異常検出性能を得ることができることが示された。
論文 参考訳(メタデータ) (2023-12-04T08:38:54Z) - Multi-scale Transformer Pyramid Networks for Multivariate Time Series
Forecasting [8.739572744117634]
短時間の時間依存性をキャプチャする次元不変な埋め込み手法を導入する。
本稿では,マルチスケールトランスフォーマーピラミッドネットワーク(MTPNet)を提案する。
論文 参考訳(メタデータ) (2023-08-23T06:40:05Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Combining Embeddings and Fuzzy Time Series for High-Dimensional Time
Series Forecasting in Internet of Energy Applications [0.0]
Fuzzy Time Series (FTS) モデルは、実装が容易で高精度なデータ駆動非パラメトリックモデルとして際立っている。
本稿では,従来の高次元データを低次元埋め込み空間に投影することにより,高次元時系列を扱う新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-03T19:50:09Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
本稿では,デバイス間のロードバランシングのための新しいデバイス・ツー・デバイス(D2D)支援型符号化学習手法(D2D-CFL)を提案する。
最小処理時間を達成するための最適圧縮率を導出し、収束時間との接続を確立する。
提案手法は,ユーザが継続的にトレーニングデータを生成するリアルタイム協調アプリケーションに有用である。
論文 参考訳(メタデータ) (2021-11-26T18:44:59Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。