論文の概要: FM-TS: Flow Matching for Time Series Generation
- arxiv url: http://arxiv.org/abs/2411.07506v1
- Date: Tue, 12 Nov 2024 03:03:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:18:18.468771
- Title: FM-TS: Flow Matching for Time Series Generation
- Title(参考訳): FM-TS:時系列生成のためのフローマッチング
- Authors: Yang Hu, Xiao Wang, Lirong Wu, Huatian Zhang, Stan Z. Li, Sheng Wang, Tianlong Chen,
- Abstract要約: 本稿では、時系列生成のための修正フローマッチングベースのフレームワークFM-TSを紹介する。
FM-TSは、トレーニングと推論の点でより効率的である。
我々は、太陽予測とMuJoCo計算タスクにおいて優れた性能を達成した。
- 参考スコア(独自算出の注目度): 71.31148785577085
- License:
- Abstract: Time series generation has emerged as an essential tool for analyzing temporal data across numerous fields. While diffusion models have recently gained significant attention in generating high-quality time series, they tend to be computationally demanding and reliant on complex stochastic processes. To address these limitations, we introduce FM-TS, a rectified Flow Matching-based framework for Time Series generation, which simplifies the time series generation process by directly optimizing continuous trajectories. This approach avoids the need for iterative sampling or complex noise schedules typically required in diffusion-based models. FM-TS is more efficient in terms of training and inference. Moreover, FM-TS is highly adaptive, supporting both conditional and unconditional time series generation. Notably, through our novel inference design, the model trained in an unconditional setting can seamlessly generalize to conditional tasks without the need for retraining. Extensive benchmarking across both settings demonstrates that FM-TS consistently delivers superior performance compared to existing approaches while being more efficient in terms of training and inference. For instance, in terms of discriminative score, FM-TS achieves 0.005, 0.019, 0.011, 0.005, 0.053, and 0.106 on the Sines, Stocks, ETTh, MuJoCo, Energy, and fMRI unconditional time series datasets, respectively, significantly outperforming the second-best method which achieves 0.006, 0.067, 0.061, 0.008, 0.122, and 0.167 on the same datasets. We have achieved superior performance in solar forecasting and MuJoCo imputation tasks, significantly enhanced by our innovative $t$ power sampling method. The code is available at https://github.com/UNITES-Lab/FMTS.
- Abstract(参考訳): 時系列生成は多くの分野にまたがる時間データを解析するための重要なツールとして登場した。
拡散モデルは近年、高品質な時系列生成において大きな注目を集めているが、計算的に要求され、複雑な確率過程に依存する傾向にある。
これらの制約に対処するため、FM-TSは時系列生成のための修正フローマッチングベースのフレームワークであり、連続した軌跡を直接最適化することで時系列生成プロセスを単純化する。
このアプローチは拡散モデルで通常必要とされる反復サンプリングや複雑なノイズスケジュールの必要性を回避する。
FM-TSは、トレーニングと推論の点でより効率的である。
さらにFM-TSは適応性が高く、条件付き時系列生成と条件なし時系列生成の両方をサポートする。
特に、我々の新しい推論設計により、非条件設定で訓練されたモデルは、再訓練を必要とせずに、条件付きタスクにシームレスに一般化することができる。
両方の設定にまたがる大規模なベンチマークでは、FM-TSはトレーニングと推論の点でより効率的でありながら、既存のアプローチと比べて一貫して優れたパフォーマンスを提供することを示している。
例えば、差別的なスコアでは、FM-TSはSines, Stocks, ETTh, MuJoCo, Energy, fMRIの無条件時系列データセットにおいて0.005, 0.019, 0.011, 0.005, 0.053, 0.106を達成し、同じデータセット上で0.006, 0.067, 0.061, 0.008, 0.122, 0.167を達成している。
我々は、太陽予測とMuJoCo計算タスクにおいて優れた性能を達成し、革新的な$t$電力サンプリング法により大幅に向上した。
コードはhttps://github.com/UNITES-Lab/FMTSで公開されている。
関連論文リスト
- FlowDAS: A Flow-Based Framework for Data Assimilation [15.64941169350615]
FlowDASは、状態遷移ダイナミクスと生成前の学習を統合するために補間剤を用いた新しい生成モデルベースのフレームワークである。
実験では,ローレンツシステムから高次元流体超解像タスクに至るまで,様々なベンチマークにおいてFlowDASの優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-13T05:03:41Z) - Comparison of Generative Learning Methods for Turbulence Modeling [1.2499537119440245]
直接数値シミュレーション (DNS) や大渦シミュレーション (LES) のような高解像度の手法は一般に計算に手頃な価格ではない。
機械学習、特に生成確率モデルにおける最近の進歩は、乱流モデリングのための有望な代替手段を提供する。
本稿では, 変分オートエンコーダ(VAE), ディープ・コンバーサナル・ジェネレータ・ネットワーク(DCGAN), 拡散確率モデル(DDPM)の3つの生成モデルの適用について検討する。
論文 参考訳(メタデータ) (2024-11-25T14:20:53Z) - SUDS: A Strategy for Unsupervised Drift Sampling [0.5437605013181142]
監視された機械学習は、データ分散が時間とともに変化するコンセプトドリフトに遭遇し、パフォーマンスが低下する。
本稿では,既存のドリフト検出アルゴリズムを用いて,同種サンプルを選択する新しい手法であるドリフトサンプリング戦略(SUDS)を提案する。
本研究は, 動的環境におけるラベル付きデータ利用の最適化におけるSUDSの有効性を示すものである。
論文 参考訳(メタデータ) (2024-11-05T10:55:29Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
拡散モデルは、自律運転における共同軌道予測と制御可能な生成を約束する。
最適ガウス拡散(OGD)と推定クリーンマニフォールド(ECM)誘導を導入する。
提案手法は生成過程の合理化を図り,計算オーバーヘッドを低減した実用的な応用を実現する。
論文 参考訳(メタデータ) (2024-08-01T17:59:59Z) - Boundary-aware Decoupled Flow Networks for Realistic Extreme Rescaling [49.215957313126324]
Invertible rescaling Network (IRN) やgenerative adversarial Network (GAN) などを含む最近の生成手法は、画像再スケーリングにおいて例外的な性能を示した。
しかし、IRNベースの手法は過度に滑らかな結果を生成する傾向にあり、一方、GANベースの手法は偽の細部を容易に生成する。
本稿では,現実的かつ視覚的に満足な結果を生成するために,境界対応デカップリングフローネットワーク(BDFlow)を提案する。
論文 参考訳(メタデータ) (2024-05-05T14:05:33Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
本稿では,言語認識フロー (ours) を提案する。
本手法は, 標準確率流モデルの再構成に基づく。
実験およびアブレーション実験により,本手法は多くのNLPタスクに対して汎用的,効果的,有益であることが示されている。
論文 参考訳(メタデータ) (2024-03-25T17:58:22Z) - AdaFlow: Imitation Learning with Variance-Adaptive Flow-Based Policies [21.024480978703288]
本稿では,フローベース生成モデルに基づく模倣学習フレームワークであるAdaFlowを提案する。
AdaFlowは状態条件付き常微分方程式(ODE)によるポリシーを表す
AdaFlowは高速な推論速度で高い性能を実現する。
論文 参考訳(メタデータ) (2024-02-06T10:15:38Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。