Relational Graph Convolutional Networks: A Closer Look
- URL: http://arxiv.org/abs/2107.10015v1
- Date: Wed, 21 Jul 2021 11:25:11 GMT
- Title: Relational Graph Convolutional Networks: A Closer Look
- Authors: Thiviyan Thanapalasingam, Lucas van Berkel, Peter Bloem, Paul Groth
- Abstract summary: We describe a reproduction of the Graph Convolutional Network (RGCN)
Using our reproduction, we explain the intuition behind the model.
Our results empirically validate the correctness of our implementations.
- Score: 1.8428580623654864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we describe a reproduction of the Relational Graph
Convolutional Network (RGCN). Using our reproduction, we explain the intuition
behind the model. Our reproduction results empirically validate the correctness
of our implementations using benchmark Knowledge Graph datasets on node
classification and link prediction tasks. Our explanation provides a friendly
understanding of the different components of the RGCN for both users and
researchers extending the RGCN approach. Furthermore, we introduce two new
configurations of the RGCN that are more parameter efficient. The code and
datasets are available at https://github.com/thiviyanT/torch-rgcn.
Related papers
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - R-GCN: The R Could Stand for Random [2.221251076371994]
"Random Convolutional Network" (RR-GCN) constructs embeddings for nodes on Knowledge Graphs.
We show that RR-GCNs can compete with fully trained R-GCNs in both node classification and link prediction settings.
arXiv Detail & Related papers (2022-03-04T16:55:25Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z) - Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text
Generation [56.73834525802723]
Lightweight Dynamic Graph Convolutional Networks (LDGCNs) are proposed.
LDGCNs capture richer non-local interactions by synthesizing higher order information from the input graphs.
We develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity.
arXiv Detail & Related papers (2020-10-09T06:03:46Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
We develop a new GCN-based Collaborative Filtering model, named Refined Graph convolution Collaborative Filtering(RGCF)
RGCF is more capable for capturing the implicit high-order connectivities inside the graph and the resultant vector representations are more expressive.
We conduct extensive experiments on three public million-size datasets, demonstrating that our RGCF significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2020-07-07T12:26:10Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.