論文の概要: Rule-Based Classification of Hyperspectral Imaging Data
- arxiv url: http://arxiv.org/abs/2107.10638v1
- Date: Wed, 21 Jul 2021 10:11:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-23 12:53:11.161040
- Title: Rule-Based Classification of Hyperspectral Imaging Data
- Title(参考訳): 超スペクトルイメージングデータの規則に基づく分類
- Authors: Songuel Polat, Alain Tremeau, Frank Boochs
- Abstract要約: スペクトルシグネチャの形状に基づく一般的な分類手法を提案する。
古典的な分類法(例えば、SVM、KNN)とは対照的に、反射率値だけでなく、曲率点、曲率値、スペクトルシグネチャの曲率挙動などのパラメータも考慮されている。
方法論の柔軟性と効率性は、2つの異なるアプリケーション分野のデータセットを用いて実証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to its high spatial and spectral information content, hyperspectral
imaging opens up new possibilities for a better understanding of data and
scenes in a wide variety of applications. An essential part of this process of
understanding is the classification part. In this article we present a general
classification approach based on the shape of spectral signatures. In contrast
to classical classification approaches (e.g. SVM, KNN), not only reflectance
values are considered, but also parameters such as curvature points, curvature
values, and the curvature behavior of spectral signatures are used to develop
shape-describing rules in order to use them for classification by a rule-based
procedure using IF-THEN queries. The flexibility and efficiency of the
methodology is demonstrated using datasets from two different application
fields and leads to convincing results with good performance.
- Abstract(参考訳): 空間的およびスペクトル的な情報量が高いため、ハイパースペクトルイメージングは様々なアプリケーションでデータやシーンをよりよく理解するための新たな可能性を開く。
この理解過程の重要な部分は分類部分である。
本稿ではスペクトルシグネチャの形状に基づく一般的な分類手法を提案する。
古典的な分類アプローチとは対照的に(例えば)
svm, knn), 反射率値だけでなく, 曲率点, 曲率値, スペクトルシグネチャの曲率挙動などのパラメータも考慮し, if-thenクエリを用いた規則ベースの手順による分類に使用するために, 形状記述規則を開発する。
方法論の柔軟性と効率性は、2つの異なるアプリケーションフィールドのデータセットを使用して実証され、優れたパフォーマンスで結果を説得する。
関連論文リスト
- Feature Aligning Few shot Learning Method Using Local Descriptors Weighted Rules [0.0]
ラベル付きサンプルの限られた数を使用して、新しいカテゴリを識別することを含む分類はほとんどない。
本稿では,局所記述子重み付きルール(FAFD-LDWR)を用いたFew-shot学習手法を提案する。
ローカルディスクリプタの識別情報を可能な限り保存するために、クロスノーマライゼーション手法を少数ショット画像分類に革新的に導入し、サポートのキーローカルディスクリプタとクエリセットを整列させて、バックグラウンドノイズを除去することで分類性能を向上させる。
論文 参考訳(メタデータ) (2024-08-26T11:36:38Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - A Survey of Graph and Attention Based Hyperspectral Image Classification
Methods for Remote Sensing Data [5.1901440366375855]
ハイパースペクトルイメージング(HSI)の分類におけるディープラーニング技術の利用は急速に増加している。
最近の手法では、グラフ畳み込みネットワークの利用と、予測にノード機能を使用するユニークな機能についても検討されている。
論文 参考訳(メタデータ) (2023-10-16T00:42:25Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
本研究では,胸部X線像の非絡み合った潜在表現の学習にDirVAE(Dirichlet Variational Autoencoder)を用いることを検討した。
DirVAEモデルにより学習された多モード潜在表現の予測能力について,補助的多ラベル分類タスクの実装により検討した。
論文 参考訳(メタデータ) (2023-02-06T18:10:08Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - A Novel Spatial-Spectral Framework for the Classification of
Hyperspectral Satellite Imagery [1.066048003460524]
本研究では,土地被覆分類データに含まれるスペクトル情報と空間情報の両方を考慮に入れた新しい枠組みを提案する。
提案手法は,パヴィア大学とインド・パインズのデータセットでそれぞれ99.52%,98.31%の精度を達成し,従来の手法よりも優れている。
論文 参考訳(メタデータ) (2020-07-22T16:12:08Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
本研究では,識別情報を捕捉し,同時に過度に適合する問題を緩和する様々な手法について検討する。
我々は、ディープニューラルネットワークにおける従来の非線形アクティベーションを置き換えるために、Max Feature Map法を採用する。
2つのデータ拡張方法と2つの深いアーキテクチャモジュールは、システムの過度な適合を減らし、差別的なパワーを維持するためにさらに検討されている。
論文 参考訳(メタデータ) (2020-07-09T08:32:06Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shotのセグメンテーションは、アノテートされたサンプルがほとんどない各画像ピクセルにカテゴリラベルを割り当てることを目的としている。
既存のメタラーニング手法では, 画像から抽出した視覚的特徴を埋め込み空間に埋め込むと, カテゴリー別識別記述子の生成に失敗する傾向にある。
本稿では,複数のエピソードにまたがる潜在特徴の分布を,自己分割方式に基づいて動的に調整する適応型フレームワークチューニングを提案する。
論文 参考訳(メタデータ) (2020-04-12T03:53:53Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
まずラベル階層の知識を任意のCNNベースの分類器に注入する。
画像からの視覚的セマンティクスと組み合わせた外部セマンティクス情報の利用が全体的な性能を高めることを実証的に示す。
論文 参考訳(メタデータ) (2020-04-02T10:22:02Z) - Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis [0.5801044612920815]
分光データのバイナリ分類における局所接続型ニューラルネットワーク(NN)の新たな応用を提案する。
2段階の分類プロセスは、2段階の分類パラダイムと1段階の分類パラダイムの代替として提示される。
論文 参考訳(メタデータ) (2020-03-26T11:33:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。