論文の概要: A Novel Spatial-Spectral Framework for the Classification of
Hyperspectral Satellite Imagery
- arxiv url: http://arxiv.org/abs/2008.02797v1
- Date: Wed, 22 Jul 2020 16:12:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 23:23:29.777911
- Title: A Novel Spatial-Spectral Framework for the Classification of
Hyperspectral Satellite Imagery
- Title(参考訳): ハイパースペクトル衛星画像の分類のための新しい空間スペクトルフレームワーク
- Authors: Shriya TP Gupta and Sanjay K Sahay
- Abstract要約: 本研究では,土地被覆分類データに含まれるスペクトル情報と空間情報の両方を考慮に入れた新しい枠組みを提案する。
提案手法は,パヴィア大学とインド・パインズのデータセットでそれぞれ99.52%,98.31%の精度を達成し,従来の手法よりも優れている。
- 参考スコア(独自算出の注目度): 1.066048003460524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyper-spectral satellite imagery is now widely being used for accurate
disaster prediction and terrain feature classification. However, in such
classification tasks, most of the present approaches use only the spectral
information contained in the images. Therefore, in this paper, we present a
novel framework that takes into account both the spectral and spatial
information contained in the data for land cover classification. For this
purpose, we use the Gaussian Maximum Likelihood (GML) and Convolutional Neural
Network methods for the pixel-wise spectral classification and then, using
segmentation maps generated by the Watershed algorithm, we incorporate the
spatial contextual information into our model with a modified majority vote
technique. The experimental analyses on two benchmark datasets demonstrate that
our proposed methodology performs better than the earlier approaches by
achieving an accuracy of 99.52% and 98.31% on the Pavia University and the
Indian Pines datasets respectively. Additionally, our GML based approach, a
non-deep learning algorithm, shows comparable performance to the
state-of-the-art deep learning techniques, which indicates the importance of
the proposed approach for performing a computationally efficient classification
of hyper-spectral imagery.
- Abstract(参考訳): ハイパースペクトル衛星画像は現在、正確な災害予測と地形特徴分類に広く使われている。
しかし、そのような分類タスクでは、現在の手法のほとんどは画像に含まれるスペクトル情報のみを使用する。
そこで本稿では,土地被覆分類データに含まれるスペクトル情報と空間情報の両方を考慮に入れた新しい枠組みを提案する。
この目的のために,gaussian maximum likelihood (gml) と畳み込みニューラルネットワーク法を用いて画素毎のスペクトル分類を行い,流域アルゴリズムによって生成されたセグメンテーションマップを用いて,空間的文脈情報を改良された多数決手法を用いてモデルに組み込む。
2つのベンチマークデータセットの実験的解析により,提案手法は,pavia university と indian pines のデータセットでそれぞれ 99.52% と 98.31% の精度を達成することにより,従来の手法よりも性能が向上することが示された。
さらに,非深層学習アルゴリズムであるgmlに基づくアプローチでは,最先端のディープラーニング技術と同等の性能を示し,ハイパースペクトル画像の計算効率の高い分類を行うための提案手法の重要性を示す。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery [0.0]
気候変動の台頭で、土地被覆マッピングは環境モニタリングにおいて緊急に必要となってきた。
本研究では,Unet,Linknet,FPN,PSPnetなどのセマンティックセグメンテーション手法を用いて植生や水などの分類を行った。
LinkNetモデルは、すべてのデータセットで0.92の精度でIoUで取得した。
論文 参考訳(メタデータ) (2024-06-20T11:40:12Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - A Survey of Graph and Attention Based Hyperspectral Image Classification
Methods for Remote Sensing Data [5.1901440366375855]
ハイパースペクトルイメージング(HSI)の分類におけるディープラーニング技術の利用は急速に増加している。
最近の手法では、グラフ畳み込みネットワークの利用と、予測にノード機能を使用するユニークな機能についても検討されている。
論文 参考訳(メタデータ) (2023-10-16T00:42:25Z) - LatentForensics: Towards frugal deepfake detection in the StyleGAN latent space [2.629091178090276]
本稿では,高品質な顔画像で訓練された最先端生成逆数ネットワーク(GAN)の潜時空間で動作するディープフェイク検出手法を提案する。
標準データセットの実験結果から,提案手法が他の最先端のディープフェイク分類法よりも優れていることが明らかになった。
論文 参考訳(メタデータ) (2023-03-30T08:36:48Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - A new filter for dimensionality reduction and classification of
hyperspectral images using GLCM features and mutual information [0.0]
ハイパースペクトル画像の次元化と分類のための新しい手法を提案する。
スペクトル情報と空間情報の両方を相互情報に基づいて考慮する。
3つのよく知られたハイパースペクトルベンチマークデータセットで実験が行われる。
論文 参考訳(メタデータ) (2022-11-01T13:19:08Z) - Incorporating Texture Information into Dimensionality Reduction for
High-Dimensional Images [65.74185962364211]
距離ベース次元削減手法に周辺情報を組み込む手法を提案する。
画像パッチを比較する異なる手法の分類に基づいて,様々なアプローチを探索する。
論文 参考訳(メタデータ) (2022-02-18T13:17:43Z) - A Contrastive Learning Approach to Auroral Identification and
Classification [0.8399688944263843]
オーロラ画像分類の課題に対する教師なし学習の新たな応用法を提案する。
オーロラ画像の表現を学習するためのコントラスト学習(SimCLR)アルゴリズムを改良し,適応する。
当社のアプローチは、運用目的の確立されたしきい値を超え、デプロイメントと利用の準備ができていることを実証しています。
論文 参考訳(メタデータ) (2021-09-28T17:51:25Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMENはマルチブランチ方式で、画素ワイドアテンションモデルとサブモジュールの分類で定式化される。
微妙な詳細情報に焦点を合わせるため、サンプル画像は、前枝から生成された画素対応の注目マップによって強化される。
3つのベンチマークデータセットで行った実験は、様々なシナリオにおいて提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2020-10-07T08:44:21Z) - Deep learning for lithological classification of carbonate rock micro-CT
images [52.77024349608834]
本研究は,ブラジルのプリサルト炭酸塩岩微視的画像のパターン同定にディープラーニング技術を適用することを目的としている。
4つの畳み込みニューラルネットワークモデルが提案された。
精度によると、リサイズ画像で訓練されたモデル2は、最初の評価アプローチでは平均75.54%、2番目の評価では平均81.33%に達した。
論文 参考訳(メタデータ) (2020-07-30T19:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。