論文の概要: Cardiac CT segmentation based on distance regularized level set
- arxiv url: http://arxiv.org/abs/2107.11119v1
- Date: Fri, 23 Jul 2021 10:13:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-26 18:43:26.413861
- Title: Cardiac CT segmentation based on distance regularized level set
- Title(参考訳): 距離正規化レベルセットに基づく心臓CTのセグメンテーション
- Authors: Xinyang Wu
- Abstract要約: 本稿では, 距離正規化レベルセット(DRL SE)を用いて, 心内膜と心内膜とのセグメンテーション効果について検討する。
その結果、me tho d は内膜と外膜を非常によく分離できることがわかった(内膜は 0.9253, Hausdorff = 7.8740, epicardium Hausdorff = 0.9687, Hausdorff = 6)。
- 参考スコア(独自算出の注目度): 1.370633147306388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Before analy z ing the CT image, it is very important to segment the heart
image, and the left ve ntricular (LV) inner and outer membrane segmentation is
one of the most important contents. However, manual segmentation is tedious and
time consuming. In order to facilitate doctors to focus on high tech tasks such
as disease analysis and diagnosis, it is crucial to develop a fast and accurate
segmentation method [1]. In view of this phenomenon, this paper uses distance
regularized level set (DRL SE) to explore the segmentation effect of epicardium
and endocardium 2 ]], which includes a distance regula riz ed t erm and an
external energy term. Finally, five CT images are used to verify the proposed
method, and image quality evaluation indexes such as dice score and Hausdorff
distance are used to evaluate the segmentation effect. The results showed that
the me tho d could separate the inner and outer membrane very well (endocardium
dice = 0.9253, Hausdorff = 7.8740; epicardium Hausdorff = 0.9687, Hausdorff = 6 .
- Abstract(参考訳): analy z ing の前には、心臓画像の分割が非常に重要であり、左大静脈(lv)の内膜および外膜分割は最も重要な内容の1つである。
しかし、手動セグメンテーションは退屈で時間がかかります。
医師が疾患解析や診断などのハイテクなタスクに集中できるようにするためには、迅速かつ正確なセグメント化法を開発することが重要である[1]。
本稿では, 距離正規化レベルセット(drl se)を用いて, 心内膜と心内膜2のセグメンテーション効果について検討する。
最後に,提案手法の検証に5つのCT画像を用い,ディススコアやハウスドルフ距離などの画像品質評価指標を用いてセグメンテーション効果を評価する。
その結果,me tho dは内膜と外膜を非常によく分離できた(endocardium dice = 0.9253, hausdorff = 7.8740, epicardium hausdorff = 0.9687, hausdorff = 6)。
関連論文リスト
- AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
CCTA画像を用いた冠動脈セグメンテーションのための注意誘導型3Dディープネットワーク(AGFA-Net)を提案する。
AGFA-Netは注意機構と機能改善モジュールを活用して、有能な特徴を捉え、セグメンテーションの精度を高める。
1000個のCCTAスキャンからなるデータセットの評価はAGFA-Netの優れた性能を示し、平均Dice係数は86.74%、ハウスドルフ距離は0.23mmである。
論文 参考訳(メタデータ) (2024-06-13T01:04:47Z) - Crop and Couple: cardiac image segmentation using interlinked specialist
networks [0.5452923068355806]
本稿では,単一解剖学に焦点を当てた専門的ネットワークを用いてセグメンテーションを行う新しい戦略を提案する。
入力長軸心MR画像から、第1段階で第3次分割を行い、これらの解剖学的領域を同定する。
専門家ネットワークは、異なる解剖学の特徴を相互に関連付けるための注意機構を介して結合される。
論文 参考訳(メタデータ) (2024-02-14T13:14:04Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
本稿では,心筋微細構造の数値ファントムを現実的に生成する新しい手法を提案する。
シリコン組織モデルにより、磁気共鳴イメージングの定量的モデルを評価することができる。
論文 参考訳(メタデータ) (2022-08-22T22:01:44Z) - Dual Shape Guided Segmentation Network for Organs-at-Risk in Head and
Neck CT Images [18.96016069277052]
頭頸部CT画像において,9つの重要な臓器-リスク (OAR) を自動デライン化するための新しい二重形状ガイドネットワーク(DSGnet)を提案する。
臓器特異的逆距離マップ(UIDM)を用いたCT画像におけるOARの大きな形状変化と境界の曖昧さに対処するため,臓器形状を表現した。
9つの重要なOARに対して0.842のDice similarity Coefficient(DSC)の総合値は、デライン化品質を改善し、時間的コストを低減させる大きな可能性を示している。
論文 参考訳(メタデータ) (2021-10-23T10:53:37Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
心臓臓器は複数のサブ構造(心室、心房、大動脈、動脈、静脈、心筋)から構成される。
これらの心筋サブ構造は互いに近縁であり、識別不能な境界を持つ。
形状と境界認識機能を利用する新しいモデルを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:54:59Z) - PC-U Net: Learning to Jointly Reconstruct and Segment the Cardiac Walls
in 3D from CT Data [18.941064150226236]
2次元CTスライスから直接LV MYO壁の点雲を直接再構成するPC-Uネットを提案する。
提案したPC-Uネットの協調学習フレームワークは,自動心画像解析タスクに有用である。
論文 参考訳(メタデータ) (2020-08-18T23:37:05Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。