論文の概要: PC-U Net: Learning to Jointly Reconstruct and Segment the Cardiac Walls
in 3D from CT Data
- arxiv url: http://arxiv.org/abs/2008.08194v1
- Date: Tue, 18 Aug 2020 23:37:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 21:59:17.292270
- Title: PC-U Net: Learning to Jointly Reconstruct and Segment the Cardiac Walls
in 3D from CT Data
- Title(参考訳): PC-Uネット:CTデータから心壁を3次元的に再構築・分離する学習
- Authors: Meng Ye, Qiaoying Huang, Dong Yang, Pengxiang Wu, Jingru Yi, Leon
Axel, Dimitris Metaxas
- Abstract要約: 2次元CTスライスから直接LV MYO壁の点雲を直接再構成するPC-Uネットを提案する。
提案したPC-Uネットの協調学習フレームワークは,自動心画像解析タスクに有用である。
- 参考スコア(独自算出の注目度): 18.941064150226236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 3D volumetric shape of the heart's left ventricle (LV) myocardium (MYO)
wall provides important information for diagnosis of cardiac disease and
invasive procedure navigation. Many cardiac image segmentation methods have
relied on detection of region-of-interest as a pre-requisite for shape
segmentation and modeling. With segmentation results, a 3D surface mesh and a
corresponding point cloud of the segmented cardiac volume can be reconstructed
for further analyses. Although state-of-the-art methods (e.g., U-Net) have
achieved decent performance on cardiac image segmentation in terms of accuracy,
these segmentation results can still suffer from imaging artifacts and noise,
which will lead to inaccurate shape modeling results. In this paper, we propose
a PC-U net that jointly reconstructs the point cloud of the LV MYO wall
directly from volumes of 2D CT slices and generates its segmentation masks from
the predicted 3D point cloud. Extensive experimental results show that by
incorporating a shape prior from the point cloud, the segmentation masks are
more accurate than the state-of-the-art U-Net results in terms of Dice's
coefficient and Hausdorff distance.The proposed joint learning framework of our
PC-U net is beneficial for automatic cardiac image analysis tasks because it
can obtain simultaneously the 3D shape and segmentation of the LV MYO walls.
- Abstract(参考訳): 心臓左室(lv)心筋壁(myo)の3次元容積形状は、心疾患の診断と侵襲的手順のナビゲーションに重要な情報を提供する。
多くの心臓画像分割法は、形状分割とモデリングの前提条件として関心領域の検出に依存している。
セグメンテーション結果により、セグメンテーションされた心容積の3次元表面メッシュと対応する点雲を再構成してさらなる解析を行うことができる。
最先端の手法(例えばU-Net)は、精度で心臓画像のセグメンテーションにおいて優れた性能を達成しているが、これらのセグメンテーションの結果は画像のアーティファクトやノイズに悩まされ、不正確な形状モデリング結果をもたらす。
本稿では,2次元ctスライスのボリュームから直接lvmyo壁の点雲を再構成し,予測した3次元点雲からセグメンテーションマスクを生成するpc-uネットを提案する。
広範な実験結果から, ポイントクラウドに先立つ形状を組み込むことにより, ダイスの係数とハウスドルフ距離の点で, 最先端のu-netよりもセグメンテーションマスクの方が精度が向上し, 提案するpc-uネットのジョイントラーニングフレームワークは, lvmyo壁の3次元形状とセグメンテーションを同時に得ることができるため, 自動心画像解析タスクに有用であることがわかった。
関連論文リスト
- Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
医用画像からの心臓解剖のメッシュ再構築は, 形状, 運動計測, 生体物理シミュレーションに有用である。
従来のボクセルベースのアプローチは、イメージの忠実さを損なう前処理と後処理に依存している。
そこで本稿では,メッシュのスライスからメッシュへの勾配バックプロパゲーションを可能にする,新しい識別可能なボキセル化とスライシング(DVS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T17:19:31Z) - How good nnU-Net for Segmenting Cardiac MRI: A Comprehensive Evaluation [2.5725730509014353]
本研究では, 心臓磁気共鳴画像(MRI)における nnU-Net の性能評価を行った。
2D、3Dフル解像度、3Dロー解像度、3Dカスケード、3Dアンサンブルモデルなど、さまざまなnnU-Net構成を採用しています。
論文 参考訳(メタデータ) (2024-07-26T01:47:20Z) - DeepMesh: Mesh-based Cardiac Motion Tracking using Deep Learning [13.289561121562057]
心臓機能評価と心血管疾患の診断には,CMR画像からの3次元運動推定が重要である。
本研究では,心内膜および心内膜からなる3次元メッシュとして心臓をモデル化する。
本稿では,テンプレート型心臓メッシュを対象空間に伝播させる新しい学習フレームワークDeepMeshを提案し,各被験者のCMR画像から心臓メッシュの3次元運動を推定する。
論文 参考訳(メタデータ) (2023-09-25T17:24:18Z) - Modeling 3D cardiac contraction and relaxation with point cloud
deformation networks [4.65840670565844]
本稿では,3次元心収縮と緩和をモデル化する新しい幾何学的深層学習手法として,ポイントクラウド変形ネットワーク(PCD-Net)を提案する。
英国バイオバンクの調査から,1万件以上の症例の大規模データセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-07-20T14:56:29Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
心臓臓器は複数のサブ構造(心室、心房、大動脈、動脈、静脈、心筋)から構成される。
これらの心筋サブ構造は互いに近縁であり、識別不能な境界を持つ。
形状と境界認識機能を利用する新しいモデルを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:54:59Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
網膜血管と主要動脈を2次元基底画像と3次元CTアンギオグラフィー(CTA)スキャンで分割する,PC-Netと呼ばれる新しいディープラーニングモデルを提案する。
PC-Netでは、ピラミッド圧縮励起(PSE)モジュールが各畳み込みブロックに空間情報を導入し、より効果的なマルチスケール特徴を抽出する能力を高めている。
論文 参考訳(メタデータ) (2020-10-09T08:22:54Z) - Deep Negative Volume Segmentation [60.44793799306154]
対象物を取り囲むすべての組織間で空の空間を分割する3Dセグメント化タスクに対する新しい角度を提案する。
我々のアプローチは骨分割のためのV-Netを含むエンドツーエンドパイプラインである。
顎顔面領域の専門医が注釈を付した50名の患者データセットにおけるCTスキャンの考え方を検証した。
論文 参考訳(メタデータ) (2020-06-22T16:55:23Z) - HEMlets PoSh: Learning Part-Centric Heatmap Triplets for 3D Human Pose
and Shape Estimation [60.35776484235304]
本研究は, 中間状態部分熱マップトリプレット(HEMlets)を導入し, 検出された2次元関節を三次元空間に持ち上げる不確実性に対処しようとするものである。
HEMletsは3つのジョイントヒートマップを使用して、各骨格体部に対するエンドジョイントの相対的な深さ情報を表す。
Convolutional Network (ConvNet) は、入力画像からHEMletを予測し、次にボリュームのジョイント・ヒートマップレグレッションを学習する。
論文 参考訳(メタデータ) (2020-03-10T04:03:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。