論文の概要: Effective and Interpretable fMRI Analysis via Functional Brain Network
Generation
- arxiv url: http://arxiv.org/abs/2107.11247v1
- Date: Fri, 23 Jul 2021 14:04:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-26 13:49:01.194507
- Title: Effective and Interpretable fMRI Analysis via Functional Brain Network
Generation
- Title(参考訳): 機能的脳ネットワーク生成による効果的かつ解釈可能なfmri解析
- Authors: Xuan Kan, Hejie Cui, Ying Guo, Carl Yang
- Abstract要約: 我々は、FMRIの特徴を抽出し、脳ネットワークを生成し、GNNで予測するエンドツーエンドのトレーニング可能なパイプラインを開発した。
PNC fMRIデータに対する予備実験は、我々のフレームワークの優れた有効性と独特な解釈可能性を示している。
- 参考スコア(独自算出の注目度): 8.704964543257246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies in neuroscience show great potential of functional brain
networks constructed from fMRI data for popularity modeling and clinical
predictions. However, existing functional brain networks are noisy and unaware
of downstream prediction tasks, while also incompatible with recent powerful
machine learning models of GNNs. In this work, we develop an end-to-end
trainable pipeline to extract prominent fMRI features, generate brain networks,
and make predictions with GNNs, all under the guidance of downstream prediction
tasks. Preliminary experiments on the PNC fMRI data show the superior
effectiveness and unique interpretability of our framework.
- Abstract(参考訳): 神経科学における最近の研究は、fMRIデータから構築された機能的脳ネットワークの大きな可能性を示し、人気モデリングと臨床予測を行っている。
しかし、既存の機能的脳ネットワークは下流予測タスクにうるさいし、GNNの最近の強力な機械学習モデルと互換性がない。
本研究では,FMRIの特徴を抽出し,脳ネットワークを生成し,GNNを用いて予測を行う,エンドツーエンドのトレーニング可能なパイプラインを開発した。
PNC fMRIデータに対する予備実験は、我々のフレームワークの優れた有効性とユニークな解釈可能性を示している。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with
Graph Neural Networks [28.460737693330245]
我々は、fMRI解析のためのアンダーラインTask-aware UnderlineBrain接続アンダーラインDAGに基づくエンドツーエンドフレームワークTBDSを提案する。
TBDSの鍵となるコンポーネントは、DAG学習アプローチを採用して、生の時系列をタスク対応の脳結合性に変換する脳ネットワークジェネレータである。
2つのfMRIデータセットに関する総合的な実験は、TBDSの有効性を示す。
論文 参考訳(メタデータ) (2022-11-01T03:59:54Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain
Network Generation [11.434951542977515]
我々は,脳深部ネットワーク生成によるタスク認識・解釈可能なfMRI解析フレームワークFBNETGENを開発した。
このプロセスとともに、重要な新しいコンポーネントは、生の時系列機能をタスク指向の脳ネットワークに変換することを学ぶグラフジェネレータである。
学習可能なグラフはまた、予測関連脳領域を強調することで独自の解釈を提供する。
論文 参考訳(メタデータ) (2022-05-25T03:26:50Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
グラフニューラルネットワーク(GNN)は、新しい構造化グラフ信号の解釈を可能にする。
基板上の局所的な機能的相互作用を学習することにより、GNNベースのアプローチが大規模ネットワーク研究に堅牢に拡張可能であることを示す。
論文 参考訳(メタデータ) (2021-12-08T12:57:13Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
機能的MRI(fMRI)によって導かれる自己神経変調タスクを行う個人のための個人表現を学習するためのディープニューラルネットワーク手法を提案する。
この表現は、直近のfMRIフレームが与えられた次のfMRIフレームにおける扁桃体活動を予測する自己教師型リカレントニューラルネットワークによって学習され、学習された個々の表現に条件付けされる。
論文 参考訳(メタデータ) (2021-12-06T10:16:54Z) - Aiding Medical Diagnosis Through the Application of Graph Neural
Networks to Functional MRI Scans [0.0]
グラフニューラルネットワーク(GNN)は、生物学的データから予測を生成する強力なツールであることが示されている。
本稿では,ノードやエッジを含むグラフとして静止状態fMRIデータを表現するための新しい手法を提案する。
我々は、GNNが人の病気や性別を予測できることを示した。
論文 参考訳(メタデータ) (2021-12-01T14:10:52Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
神経科学における中心的な問題は、脳内の自律的な動的相互作用が、比較的静的なバックボーンにどのように現れるかである。
構造解剖学的レイアウトに基づく機能的相互作用を記述するグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々は,GNNがデータの長期的依存関係をキャプチャし,大規模ネットワークの解析までスケールアップ可能であることを示す。
論文 参考訳(メタデータ) (2020-10-14T15:01:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。