WiP Abstract : Robust Out-of-distribution Motion Detection and
Localization in Autonomous CPS
- URL: http://arxiv.org/abs/2107.11736v1
- Date: Sun, 25 Jul 2021 06:20:05 GMT
- Title: WiP Abstract : Robust Out-of-distribution Motion Detection and
Localization in Autonomous CPS
- Authors: Yeli Feng, Arvind Easwaran
- Abstract summary: We propose a robust out-of-distribution (OOD) detection framework for deep learning.
Our approach detects unusual movements from driving video in real-time by combining classical optic flow operation with representation learning.
Evaluation on a driving simulation data set shows that our approach is statistically more robust than related works.
- Score: 3.464656011246703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Highly complex deep learning models are increasingly integrated into modern
cyber-physical systems (CPS), many of which have strict safety requirements.
One problem arising from this is that deep learning lacks interpretability,
operating as a black box. The reliability of deep learning is heavily impacted
by how well the model training data represents runtime test data, especially
when the input space dimension is high as natural images. In response, we
propose a robust out-of-distribution (OOD) detection framework. Our approach
detects unusual movements from driving video in real-time by combining
classical optic flow operation with representation learning via variational
autoencoder (VAE). We also design a method to locate OOD factors in images.
Evaluation on a driving simulation data set shows that our approach is
statistically more robust than related works.
Related papers
- Guiding Attention in End-to-End Driving Models [49.762868784033785]
Vision-based end-to-end driving models trained by imitation learning can lead to affordable solutions for autonomous driving.
We study how to guide the attention of these models to improve their driving quality by adding a loss term during training.
In contrast to previous work, our method does not require these salient semantic maps to be available during testing time.
arXiv Detail & Related papers (2024-04-30T23:18:51Z) - Automatic UAV-based Airport Pavement Inspection Using Mixed Real and
Virtual Scenarios [3.0874677990361246]
We propose a vision-based approach to automatically identify pavement distress using images captured by UAVs.
The proposed method is based on Deep Learning (DL) to segment defects in the image.
We demonstrate that the use of a mixed dataset composed of synthetic and real training images yields better results when testing the training models in real application scenarios.
arXiv Detail & Related papers (2024-01-11T16:30:07Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - EMA-VIO: Deep Visual-Inertial Odometry with External Memory Attention [5.144653418944836]
Visual-inertial odometry (VIO) algorithms exploit the information from camera and inertial sensors to estimate position and translation.
Recent deep learning based VIO models attract attentions as they provide pose information in a data-driven way.
We propose a novel learning based VIO framework with external memory attention that effectively and efficiently combines visual and inertial features for states estimation.
arXiv Detail & Related papers (2022-09-18T07:05:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - CARNet: A Dynamic Autoencoder for Learning Latent Dynamics in Autonomous
Driving Tasks [11.489187712465325]
An autonomous driving system should effectively use the information collected from the various sensors in order to form an abstract description of the world.
Deep learning models, such as autoencoders, can be used for that purpose, as they can learn compact latent representations from a stream of incoming data.
This work proposes CARNet, a Combined dynAmic autoencodeR NETwork architecture that utilizes an autoencoder combined with a recurrent neural network to learn the current latent representation.
arXiv Detail & Related papers (2022-05-18T04:15:42Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Fast Modeling and Understanding Fluid Dynamics Systems with
Encoder-Decoder Networks [0.0]
We show that an accurate deep-learning-based proxy model can be taught efficiently by a finite-volume-based simulator.
Compared to traditional simulation, the proposed deep learning approach enables much faster forward computation.
We quantify the sensitivity of the deep learning model to key physical parameters and hence demonstrate that the inversion problems can be solved with great acceleration.
arXiv Detail & Related papers (2020-06-09T17:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.