Graph Representation Learning on Tissue-Specific Multi-Omics
- URL: http://arxiv.org/abs/2107.11856v1
- Date: Sun, 25 Jul 2021 17:38:45 GMT
- Title: Graph Representation Learning on Tissue-Specific Multi-Omics
- Authors: Amine Amor (1), Pietro Lio' (1), Vikash Singh (1), Ramon Vi\~nas
Torn\'e (1), Helena Andres Terre (1)
- Abstract summary: We leverage a graph embedding model (i.e VGAE) to perform link prediction on tissue-specific Gene-Gene Interaction (GGI) networks.
We prove that the combination of multiple biological modalities (i.e multi-omics) leads to powerful embeddings and better link prediction performances.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining different modalities of data from human tissues has been critical
in advancing biomedical research and personalised medical care. In this study,
we leverage a graph embedding model (i.e VGAE) to perform link prediction on
tissue-specific Gene-Gene Interaction (GGI) networks. Through ablation
experiments, we prove that the combination of multiple biological modalities
(i.e multi-omics) leads to powerful embeddings and better link prediction
performances. Our evaluation shows that the integration of gene methylation
profiles and RNA-sequencing data significantly improves the link prediction
performance. Overall, the combination of RNA-sequencing and gene methylation
data leads to a link prediction accuracy of 71% on GGI networks. By harnessing
graph representation learning on multi-omics data, our work brings novel
insights to the current literature on multi-omics integration in
bioinformatics.
Related papers
- Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
Multi-omics data integration poses significant challenges due to the high dimensionality, data complexity, and distinct characteristics of various omics types.
This study evaluates three graph neural network architectures for multi-omics (MO) integration based on graph-convolutional networks (GCN), graph-attention networks (GAT), and graph-transformer networks (GTN)
arXiv Detail & Related papers (2024-10-05T16:17:44Z) - BioBERT-based Deep Learning and Merged ChemProt-DrugProt for Enhanced Biomedical Relation Extraction [2.524192238862961]
Our approach integrates the ChemProt and DrugProt datasets using a novel merging strategy.
The study highlights the potential of automated information extraction in biomedical research and clinical practice.
arXiv Detail & Related papers (2024-05-28T21:34:01Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
We introduce a novel integrative neural network approach for cancer molecular subtype and biomedical classification applications.
IGCN can identify which types of omics receive more emphasis for each patient to predict a certain class.
IGCN has the capability to pinpoint significant biomarkers from a range of omics data types.
arXiv Detail & Related papers (2024-01-31T05:52:11Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
We introduce a novel model called Multimodal Similarity Learning Graph Neural Network.
It combines Multimodal Machine Learning and Deep Graph Neural Networks to learn gene representations from single-cell sequencing and spatial transcriptomic data.
Our model efficiently produces unified gene representations for the analysis of gene functions, tissue functions, diseases, and species evolution.
arXiv Detail & Related papers (2023-09-29T13:33:53Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Graph Neural Networks for Microbial Genome Recovery [64.91162205624848]
We propose to use Graph Neural Networks (GNNs) to leverage the assembly graph when learning contig representations for metagenomic binning.
Our method, VaeG-Bin, combines variational autoencoders for learning latent representations of the individual contigs, with GNNs for refining these representations by taking into account the neighborhood structure of the contigs in the assembly graph.
arXiv Detail & Related papers (2022-04-26T12:49:51Z) - Predicting Biomedical Interactions with Higher-Order Graph Convolutional
Networks [2.9488233765621295]
We present a higher-order graph convolutional network (HOGCN) to aggregate information from the higher-order neighborhood for biomedical interaction prediction.
Experiments on four interaction networks, including protein-protein, drug-drug, drug-target, and gene-disease interactions, show that HOGCN achieves more accurate and calibrated predictions.
arXiv Detail & Related papers (2020-10-16T17:16:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.