Adaptive Estimation and Uniform Confidence Bands for Nonparametric
Structural Functions and Elasticities
- URL: http://arxiv.org/abs/2107.11869v3
- Date: Sun, 7 Jan 2024 11:31:20 GMT
- Title: Adaptive Estimation and Uniform Confidence Bands for Nonparametric
Structural Functions and Elasticities
- Authors: Xiaohong Chen, Timothy Christensen, Sid Kankanala
- Abstract summary: We introduce two data-driven procedures for optimal estimation and inference in nonparametric models.
We estimate the elasticity of the intensive margin of firm exports in a monopolistic competition model of international trade.
- Score: 2.07706336594149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce two data-driven procedures for optimal estimation and inference
in nonparametric models using instrumental variables. The first is a
data-driven choice of sieve dimension for a popular class of sieve two-stage
least squares estimators. When implemented with this choice, estimators of both
the structural function $h_0$ and its derivatives (such as elasticities)
converge at the fastest possible (i.e., minimax) rates in sup-norm. The second
is for constructing uniform confidence bands (UCBs) for $h_0$ and its
derivatives. Our UCBs guarantee coverage over a generic class of
data-generating processes and contract at the minimax rate, possibly up to a
logarithmic factor. As such, our UCBs are asymptotically more efficient than
UCBs based on the usual approach of undersmoothing. As an application, we
estimate the elasticity of the intensive margin of firm exports in a
monopolistic competition model of international trade. Simulations illustrate
the good performance of our procedures in empirically calibrated designs. Our
results provide evidence against common parameterizations of the distribution
of unobserved firm heterogeneity.
Related papers
- BI-EqNO: Generalized Approximate Bayesian Inference with an Equivariant Neural Operator Framework [9.408644291433752]
We introduce BI-EqNO, an equivariant neural operator framework for generalized approximate Bayesian inference.
BI-EqNO transforms priors into posteriors on conditioned observation data through data-driven training.
We demonstrate BI-EqNO's utility through two examples: (1) as a generalized Gaussian process (gGP) for regression, and (2) as an ensemble neural filter (EnNF) for sequential data assimilation.
arXiv Detail & Related papers (2024-10-21T18:39:16Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Online Bootstrap Inference with Nonconvex Stochastic Gradient Descent
Estimator [0.0]
In this paper, we investigate the theoretical properties of gradient descent (SGD) for statistical inference in the context of convex problems.
We propose two coferential procedures which may contain multiple error minima.
arXiv Detail & Related papers (2023-06-03T22:08:10Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC) measures the average performance of a binary classifier.
Most of the existing methods could only optimize PAUC approximately, leading to inevitable biases that are not controllable.
We present a simpler reformulation of the PAUC problem via distributional robust optimization AUC.
arXiv Detail & Related papers (2022-10-08T08:26:22Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric [0.0]
We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line.
We focus in particular on Principal Component Analysis (PCA) and regression.
Several theoretical properties of the models are investigated and consistency is proven.
arXiv Detail & Related papers (2021-01-22T10:24:49Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
We propose an efficient and scalable semi-implicit extrapolational (SIVI)
Our method maps SIVI's evidence to a rigorous inference of lower gradient values.
arXiv Detail & Related papers (2021-01-15T11:39:09Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
We propose a doubly robust two-stage semiparametric difference-in-difference estimator for estimating heterogeneous treatment effects.
The first stage allows a general set of machine learning methods to be used to estimate the propensity score.
In the second stage, we derive the rates of convergence for both the parametric parameter and the unknown function.
arXiv Detail & Related papers (2020-09-07T15:14:29Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.