3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework
- URL: http://arxiv.org/abs/2107.12046v1
- Date: Mon, 26 Jul 2021 09:04:59 GMT
- Title: 3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework
- Authors: Xi Guan, Guang Yang, Jianming Ye, Weiji Yang, Xiaomei Xu, Weiwei
Jiang, Xiaobo Lai
- Abstract summary: Glioma is the most common brain malignant tumor, with a high morbidity rate and a mortality rate of more than three percent.
The main method of acquiring brain tumors in the clinic is MRI of brain tumor regions from multi-modal MRI scan images.
We propose an automatic brain tumor MRI data segmentation framework which is called AGSE-VNet.
- Score: 3.0261170901794308
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: Glioma is the most common brain malignant tumor, with a high
morbidity rate and a mortality rate of more than three percent, which seriously
endangers human health. The main method of acquiring brain tumors in the clinic
is MRI. Segmentation of brain tumor regions from multi-modal MRI scan images is
helpful for treatment inspection, post-diagnosis monitoring, and effect
evaluation of patients. However, the common operation in clinical brain tumor
segmentation is still manual segmentation, lead to its time-consuming and large
performance difference between different operators, a consistent and accurate
automatic segmentation method is urgently needed. Methods: To meet the above
challenges, we propose an automatic brain tumor MRI data segmentation framework
which is called AGSE-VNet. In our study, the Squeeze and Excite (SE) module is
added to each encoder, the Attention Guide Filter (AG) module is added to each
decoder, using the channel relationship to automatically enhance the useful
information in the channel to suppress the useless information, and use the
attention mechanism to guide the edge information and remove the influence of
irrelevant information such as noise. Results: We used the BraTS2020 challenge
online verification tool to evaluate our approach. The focus of verification is
that the Dice scores of the whole tumor (WT), tumor core (TC) and enhanced
tumor (ET) are 0.68, 0.85 and 0.70, respectively. Conclusion: Although MRI
images have different intensities, AGSE-VNet is not affected by the size of the
tumor, and can more accurately extract the features of the three regions, it
has achieved impressive results and made outstanding contributions to the
clinical diagnosis and treatment of brain tumor patients.
Related papers
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
We introduce an ensemble method that comprises eleven unique variations based on three core architectures.
Our findings reveal that the ensemble approach, combining different architectures, outperforms single models.
These results underline the potential of tailored deep learning techniques in precisely segmenting brain tumors.
arXiv Detail & Related papers (2023-08-14T15:34:22Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
This paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to classify and segment the brain tumor regions using MRI images.
The model achieved promising results as compared to existing state-of-the-art models.
arXiv Detail & Related papers (2021-07-26T16:51:00Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
Manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task.
Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation.
arXiv Detail & Related papers (2020-12-22T23:16:43Z) - Automatic Brain Tumor Segmentation with Scale Attention Network [1.7767466724342065]
Multimodal Brain Tumor Challenge 2020 (BraTS 2020) provides a common platform for comparing different automatic algorithms on multi-parametric Magnetic Resonance Imaging (mpMRI)
We propose a dynamic scale attention mechanism that incorporates low-level details with high-level semantics from feature maps at different scales.
Our framework was trained using the 369 challenge training cases provided by BraTS 2020, and achieved an average Dice Similarity Coefficient (DSC) of 0.8828, 0.8433 and 0.8177, as well as 95% Hausdorff distance (in millimeter) of 5.2176, 17.9697 and 13.4298 on 166 testing cases for whole tumor
arXiv Detail & Related papers (2020-11-06T04:45:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.