MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification
- URL: http://arxiv.org/abs/2107.12321v1
- Date: Mon, 26 Jul 2021 16:51:00 GMT
- Title: MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification
- Authors: Sachin Gupta, Narinder Singh Punn, Sanjay Kumar Sonbhadra, Sonali
Agarwal
- Abstract summary: This paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to classify and segment the brain tumor regions using MRI images.
The model achieved promising results as compared to existing state-of-the-art models.
- Score: 0.9176056742068814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain tumor is the most common and deadliest disease that can be found in all
age groups. Generally, MRI modality is adopted for identifying and diagnosing
tumors by the radiologists. The correct identification of tumor regions and its
type can aid to diagnose tumors with the followup treatment plans. However, for
any radiologist analysing such scans is a complex and time-consuming task.
Motivated by the deep learning based computer-aided-diagnosis systems, this
paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to
classify and segment the brain tumor regions using MRI images. The MAG-Net is
trained and evaluated on the Figshare dataset that includes coronal, axial, and
sagittal views with 3 types of tumors meningioma, glioma, and pituitary tumor.
With exhaustive experimental trials the model achieved promising results as
compared to existing state-of-the-art models, while having least number of
training parameters among other state-of-the-art models.
Related papers
- Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - Towards Generalizable Tumor Synthesis [48.45704270448412]
Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation.
This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation.
We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ.
arXiv Detail & Related papers (2024-02-29T18:57:39Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
The classification model is based on the EfficientNetB1 architecture and is trained to classify images into four classes: meningioma, glioma, pituitary adenoma, and no tumor.
The segmentation model is based on the U-Net architecture and is trained to accurately segment the tumor from the MRI images.
arXiv Detail & Related papers (2023-04-20T01:32:55Z) - Brain Tumor Classification by Cascaded Multiscale Multitask Learning
Framework Based on Feature Aggregation [12.256043883052506]
Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death.
This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection.
Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art.
arXiv Detail & Related papers (2021-12-28T22:49:44Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - 3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework [3.0261170901794308]
Glioma is the most common brain malignant tumor, with a high morbidity rate and a mortality rate of more than three percent.
The main method of acquiring brain tumors in the clinic is MRI of brain tumor regions from multi-modal MRI scan images.
We propose an automatic brain tumor MRI data segmentation framework which is called AGSE-VNet.
arXiv Detail & Related papers (2021-07-26T09:04:59Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
Manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task.
Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation.
arXiv Detail & Related papers (2020-12-22T23:16:43Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.