An integrated whispering-gallery-mode resonator for solid-state coherent
quantum photonics
- URL: http://arxiv.org/abs/2107.12188v2
- Date: Tue, 27 Jul 2021 13:21:51 GMT
- Title: An integrated whispering-gallery-mode resonator for solid-state coherent
quantum photonics
- Authors: Arianne Brooks, Xiao-Liu Chu, Zhe Liu, Rudiger Schott, Arne Ludwig,
Andreas D. Wieck, Leonardo Midolo, Peter Lodahl and Nir Rotenberg
- Abstract summary: We report on an integrated microdisk cavity containing self-assembled quantum dots to coherently route photons.
We show how this integrated system can coherently re-route photons between the drop and bus ports.
We discuss the strengths and limitations of this approach, focusing on how it can be used to increase the efficiency of quantum devices.
- Score: 6.082529164787429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tailored photonic cavities allow enhancing light-matter interaction
ultimately to create a fully coherent quantum interface. Here, we report on an
integrated microdisk cavity containing self-assembled quantum dots to
coherently route photons between different access waveguides. We measure a
Purcell factor of $F_{exp}=6.9\pm0.9$ for a cavity quality factor of about
10,000, allowing us to observe clear signatures of coherent scattering of
photons by the quantum dots. We show how this integrated system can coherently
re-route photons between the drop and bus ports, and how this routing is
controlled by detuning the quantum dot and resonator, or through the strength
of the excitation beam, where a critical photon number less than one photon per
lifetime is required. We discuss the strengths and limitations of this
approach, focusing on how the coherent scattering and single-photon
nonlinearity can be used to increase the efficiency of quantum devices such as
routers or Bell-state analyzers.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Highly indistinguishable single photons from droplet-etched GaAs quantum
dots integrated in single-mode waveguides and beamsplitters [0.0]
GaAs quantum dots (QDs) obtained by droplet etching epitaxy show excellent performances with visibilities close to one for both individual and remote emitters.
We show the first implementation in this direction, realizing the key passive elements needed in photonic integrated circuits (PICs)
We study both the statistical distribution of wavelength, linewidth and decay times of the excitonic line of multiple QDs, as well as the quantum optical properties of individual emitters under resonant excitation.
arXiv Detail & Related papers (2023-10-18T11:34:11Z) - Deterministic generation of arbitrary n-photon states in an integrated
photonic system [0.0]
We propose a chip-integrable scheme to generate a group of n photons with very high fidelity based on the long-range collective interaction between the emitters mediated by the waveguide modes.
Our results can find important applications in the areas such as photonic-chip-based quantum information processing and quantum metrology.
arXiv Detail & Related papers (2023-05-17T01:24:11Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - On-chip spin-photon entanglement based on single-photon scattering [2.4567119332161234]
We demonstrate an on-chip entangling gate between an incoming photon and a stationary quantum-dot spin qubit.
Results represent a major step in realizing a quantum node capable of both photonic entanglement generation and on-chip quantum logic.
arXiv Detail & Related papers (2022-05-25T15:14:28Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.