論文の概要: DYPLODOC: Dynamic Plots for Document Classification
- arxiv url: http://arxiv.org/abs/2107.12226v1
- Date: Mon, 26 Jul 2021 14:12:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-27 16:25:34.399827
- Title: DYPLODOC: Dynamic Plots for Document Classification
- Title(参考訳): DYPLODOC: 文書分類のための動的プロット
- Authors: Anastasia Malysheva, Alexey Tikhonov, Ivan P. Yamshchikov
- Abstract要約: 本稿では,そのジャンルのメタ情報と,それらから抽出した動的プロットとを合わせて,13万番組のプロット記述からなるデータセットを提案する。
本稿では,プロットダイナミックス抽出のための提案ツールの有効性を検証し,物語解析と生成のタスクに対する本手法の適用の可能性について論じる。
- 参考スコア(独自算出の注目度): 0.3437656066916039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Narrative generation and analysis are still on the fringe of modern natural
language processing yet are crucial in a variety of applications. This paper
proposes a feature extraction method for plot dynamics. We present a dataset
that consists of the plot descriptions for thirteen thousand TV shows alongside
meta-information on their genres and dynamic plots extracted from them. We
validate the proposed tool for plot dynamics extraction and discuss possible
applications of this method to the tasks of narrative analysis and generation.
- Abstract(参考訳): ナラティブ生成と分析は現代自然言語処理の領域ではいまだに残っているが、様々な応用において不可欠である。
本稿ではプロットダイナミクスの特徴抽出手法を提案する。
本稿では,そのジャンルのメタ情報と,それらから抽出した動的プロットととともに,13万番組のプロット記述からなるデータセットを提案する。
提案するプロットダイナミクス抽出ツールの有効性を検証し,ナラティブ解析と生成のタスクへの適用可能性について考察した。
関連論文リスト
- Branching Narratives: Character Decision Points Detection [13.615681132633561]
本稿では,CYOAライクなゲームグラフをベースとした新しいデータセットを提案する。
このようなモデルを既存のテキストに適用して,潜在的分岐点で分割した線形セグメントを生成する方法を示す。
論文 参考訳(メタデータ) (2024-05-12T13:36:07Z) - generAItor: Tree-in-the-Loop Text Generation for Language Model
Explainability and Adaptation [28.715001906405362]
大規模言語モデル(LLM)は、自動補完、補助的な書き込み、チャットベースのテキスト生成など、様々な下流タスクに広くデプロイされている。
本稿では,ビーム探索ツリーの視覚的表現を解析,説明,適応する中心的な要素とする,ループ内ツリーのアプローチを提案することで,この欠点に対処する。
視覚解析技術であるGenerAItorを,タスク固有のウィジェットで中央ビーム探索木を拡大し,ターゲットとした可視化とインタラクションの可能性を提供する。
論文 参考訳(メタデータ) (2024-03-12T13:09:15Z) - A Comprehensive Survey of 3D Dense Captioning: Localizing and Describing
Objects in 3D Scenes [80.20670062509723]
3Dシークエンスキャプションは、3Dシーンの詳細な説明を作成することを目的とした、視覚言語によるブリッジングタスクである。
2次元の視覚的キャプションと比較して、現実世界の表現が密接なため、大きな可能性と課題が提示される。
既存手法の人気と成功にもかかわらず、この分野の進歩を要約した総合的な調査は乏しい。
論文 参考訳(メタデータ) (2024-03-12T10:04:08Z) - EIPE-text: Evaluation-Guided Iterative Plan Extraction for Long-Form
Narrative Text Generation [114.50719922069261]
長文物語テキスト生成のための評価誘導反復計画抽出法(EIPE-text)を提案する。
EIPEテキストには、計画抽出、学習、推論の3段階がある。
小説やストーリーテリングの分野におけるEIPEテキストの有効性を評価する。
論文 参考訳(メタデータ) (2023-10-12T10:21:37Z) - Improving Keyphrase Extraction with Data Augmentation and Information
Filtering [67.43025048639333]
キーフレーズ抽出はNLPにおける文書理解に不可欠なタスクの1つである。
本稿では,Behanceプラットフォーム上でストリームされたビデオからキーフレーズを抽出するための新しいコーパスと手法を提案する。
論文 参考訳(メタデータ) (2022-09-11T22:38:02Z) - A Review of Sound Source Localization with Deep Learning Methods [71.18444724397486]
本稿では,単音源および複数音源の音源定位のための深層学習手法について概説する。
この文脈におけるニューラルネットワークを用いた局所化文献の網羅的なトポグラフィーを提供する。
文献レビューを要約したテーブルをレビューの最後に提供し、所定の対象特性のセットでメソッドを素早く検索する。
論文 参考訳(メタデータ) (2021-09-08T07:25:39Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z) - Unsupervised Graph-based Topic Modeling from Video Transcriptions [5.210353244951637]
ニューラルワード埋め込みとグラフベースのクラスタリング手法を用いて,映像の書き起こしに関するトピック抽出器を開発した。
実生活マルチモーダルデータセット MuSe-CaR の実験結果から,本手法は一貫性と意味のあるトピックを抽出することを示した。
論文 参考訳(メタデータ) (2021-05-04T12:48:17Z) - Enhancing Extractive Text Summarization with Topic-Aware Graph Neural
Networks [21.379555672973975]
本稿では,グラフニューラルネットワーク(GNN)に基づく抽出要約モデルを提案する。
本モデルでは,文章選択のための文書レベルの特徴を提供する潜在トピックを発見するために,共同ニューラルトピックモデル(NTM)を統合している。
実験結果から,CNN/DMおよびNYTデータセットにおいて,本モデルがほぼ最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2020-10-13T09:30:04Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
PlotMachinesは、動的プロット状態を追跡することによってアウトラインをコヒーレントなストーリーに変換することを学習する、ニューラルな物語モデルである。
さらに,PlotMachinesを高レベルな談話構造で強化し,モデルが物語の異なる部分に対応する筆記スタイルを学習できるようにした。
論文 参考訳(メタデータ) (2020-04-30T17:16:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。