論文の概要: Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends
- arxiv url: http://arxiv.org/abs/2107.02126v2
- Date: Tue, 6 Jul 2021 07:25:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 14:06:06.329178
- Title: Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends
- Title(参考訳): ディープラーニングスキーマに基づくイベント抽出:文献レビューと最近の動向
- Authors: Qian Li, Hao Peng, Jianxin Li, Yiming Hei, Rui Sun, Jiawei Sheng, Shu
Guo, Lihong Wang, Philip S. Yu
- Abstract要約: ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
- 参考スコア(独自算出の注目度): 60.29289298349322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Schema-based event extraction is a critical technique to apprehend the
essential content of events promptly. With the rapid development of deep
learning technology, event extraction technology based on deep learning has
become a research hotspot. Numerous methods, datasets, and evaluation metrics
have been proposed in the literature, raising the need for a comprehensive and
updated survey. This paper fills the gap by reviewing the state-of-the-art
approaches, focusing on deep learning-based models. We summarize the task
definition, paradigm, and models of schema-based event extraction and then
discuss each of these in detail. We introduce benchmark datasets that support
tests of predictions and evaluation metrics. A comprehensive comparison between
different techniques is also provided in this survey. Finally, we conclude by
summarizing future research directions facing the research area.
- Abstract(参考訳): スキーマベースのイベント抽出は、イベントの本質的内容を迅速に認識するための重要なテクニックである。
ディープラーニング技術の急速な発展に伴い、ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
多くの方法、データセット、評価指標が文献に提案されており、包括的かつ更新された調査の必要性が高まっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
我々は、スキーマベースのイベント抽出のタスク定義、パラダイム、モデルを要約し、これらのそれぞれを詳細に議論する。
予測と評価指標のテストをサポートするベンチマークデータセットを導入する。
本調査では, 異なる手法の包括的比較を行った。
最後に,研究領域に面した今後の研究方向性をまとめた。
関連論文リスト
- A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Toward Unified Practices in Trajectory Prediction Research on Drone Datasets [3.1406146587437904]
高品質なデータセットの可用性は、自動運転車の行動予測アルゴリズムの開発に不可欠である。
本稿では,動き予測研究における特定のデータセットの利用の標準化の必要性を強調した。
これを実現するためのツールとプラクティスのセットを提案します。
論文 参考訳(メタデータ) (2024-05-01T16:17:39Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Deep Depth Completion: A Survey [26.09557446012222]
我々は、読者が研究動向をよりよく把握し、現在の進歩を明確に理解するのに役立つ総合的な文献レビューを提供する。
ネットワークアーキテクチャ,損失関数,ベンチマークデータセット,学習戦略の設計面から,関連する研究について検討する。
室内および屋外のデータセットを含む,広く使用されている2つのベンチマークデータセットに対して,モデル性能の定量的比較を行った。
論文 参考訳(メタデータ) (2022-05-11T08:24:00Z) - A Comparative Review of Recent Few-Shot Object Detection Algorithms [0.0]
ラベル付きデータで新しいクラスに適応するために学習するオブジェクトの少ない検出は、命令的で長期にわたる問題である。
近年の研究では、ターゲットドメインを監督せずに追加データセットに暗黙の手がかりを使って、少数のショット検出器が堅牢なタスク概念を洗練させる方法が研究されている。
論文 参考訳(メタデータ) (2021-10-30T07:57:11Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
ビデオ要約技術は、ビデオコンテンツの最も有益な部分を選択して、簡潔で完全なシノプシスを作成することを目指しています。
本研究は,この領域における最近の進歩に着目し,既存の深層学習に基づく総括的映像要約手法の包括的調査を行う。
論文 参考訳(メタデータ) (2021-01-15T11:41:29Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。