Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
Kernel Learning
- URL: http://arxiv.org/abs/2106.00638v1
- Date: Tue, 1 Jun 2021 17:09:47 GMT
- Title: Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
Kernel Learning
- Authors: Zhiliang Wu, Yinchong Yang, Jindong Gu, Volker Tresp
- Abstract summary: We propose an uncertainty-aware deep kernel learning model which permits the estimation of the uncertainty in the prediction.
In most cases, the proposed model shows better performance compared to common architectures.
Our model can also be used to detect challenging and controversial test samples.
- Score: 14.03923026690186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are increasingly being used for the analysis of medical
images. However, most works neglect the uncertainty in the model's prediction.
We propose an uncertainty-aware deep kernel learning model which permits the
estimation of the uncertainty in the prediction by a pipeline of a
Convolutional Neural Network and a sparse Gaussian Process. Furthermore, we
adapt different pre-training methods to investigate their impacts on the
proposed model. We apply our approach to Bone Age Prediction and Lesion
Localization. In most cases, the proposed model shows better performance
compared to common architectures. More importantly, our model expresses
systematically higher confidence in more accurate predictions and less
confidence in less accurate ones. Our model can also be used to detect
challenging and controversial test samples. Compared to related methods such as
Monte-Carlo Dropout, our approach derives the uncertainty information in a
purely analytical fashion and is thus computationally more efficient.
Related papers
- Estimating Epistemic and Aleatoric Uncertainty with a Single Model [5.871583927216653]
We introduce a new approach to ensembling, hyper-diffusion models (HyperDM)
HyperDM offers prediction accuracy on par with, and in some cases superior to, multi-model ensembles.
We validate our method on two distinct real-world tasks: x-ray computed tomography reconstruction and weather temperature forecasting.
arXiv Detail & Related papers (2024-02-05T19:39:52Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
One of the most common problems preventing the application of prediction models in the real world is lack of generalization.
We propose novel methods that estimate uncertainty of particular predictions generated by a neural network classification model.
The proposed methods infer the confidence of a particular prediction based on the distribution of the logit values corresponding to this prediction.
arXiv Detail & Related papers (2022-10-14T12:32:50Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
We propose Deep Kernel Accelerated Failure Time models for the time-to-event prediction task.
Our model shows better point estimate performance than recurrent neural network based baselines in experiments on two real-world datasets.
arXiv Detail & Related papers (2021-07-26T14:55:02Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Deep Bayesian Gaussian Processes for Uncertainty Estimation in
Electronic Health Records [30.65770563934045]
We merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation.
We show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets.
arXiv Detail & Related papers (2020-03-23T10:36:52Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.