論文の概要: Federated Learning Meets Natural Language Processing: A Survey
- arxiv url: http://arxiv.org/abs/2107.12603v1
- Date: Tue, 27 Jul 2021 05:07:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-29 00:48:21.104864
- Title: Federated Learning Meets Natural Language Processing: A Survey
- Title(参考訳): 連合学習が自然言語処理を満たす:調査
- Authors: Ming Liu, Stella Ho, Mengqi Wang, Longxiang Gao, Yuan Jin, He Zhang
- Abstract要約: Federated Learningは、複数の分散エッジデバイス(モバイルなど)やサーバから、ローカルデータのプライバシを犠牲にすることなく、マシンラーニングモデルを学習することを目的としている。
最近の自然言語処理技術は、ディープラーニングと大規模な事前学習言語モデルに依存している。
- 参考スコア(独自算出の注目度): 12.224792145700562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning aims to learn machine learning models from multiple
decentralized edge devices (e.g. mobiles) or servers without sacrificing local
data privacy. Recent Natural Language Processing techniques rely on deep
learning and large pre-trained language models. However, both big deep neural
and language models are trained with huge amounts of data which often lies on
the server side. Since text data is widely originated from end users, in this
work, we look into recent NLP models and techniques which use federated
learning as the learning framework. Our survey discusses major challenges in
federated natural language processing, including the algorithm challenges,
system challenges as well as the privacy issues. We also provide a critical
review of the existing Federated NLP evaluation methods and tools. Finally, we
highlight the current research gaps and future directions.
- Abstract(参考訳): Federated Learningは、複数の分散エッジデバイス(例)から機械学習モデルを学習することを目的としている。
ローカルデータのプライバシーを犠牲にすることなく、あるいはサーバ。
最近の自然言語処理技術は、ディープラーニングと大規模事前学習言語モデルに依存している。
しかし、大きなディープニューラルネットワークと言語モデルの両方が、サーバ側にあることが多い膨大なデータでトレーニングされている。
テキストデータはエンドユーザーから広く派生しているため、本研究では、フェデレートラーニングを学習フレームワークとして利用する最近のNLPモデルとテクニックについて考察する。
本調査では,アルゴリズム問題,システム問題,プライバシー問題など,連合自然言語処理における大きな課題について論じる。
また,既存のフェデレートNLP評価手法およびツールの批判的レビューを行う。
最後に、現在の研究のギャップと今後の方向性を強調する。
関連論文リスト
- Deep Learning and Machine Learning -- Natural Language Processing: From Theory to Application [17.367710635990083]
自然言語処理(NLP)と大規模言語モデル(LLM)の役割に焦点を当てる。
本稿では,データ前処理技術とHugging Faceのようなフレームワークを用いたトランスフォーマーモデルの実装について論じる。
マルチリンガルデータの扱い、バイアスの低減、モデルの堅牢性確保といった課題を強調している。
論文 参考訳(メタデータ) (2024-10-30T09:35:35Z) - A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Surveying the Landscape of Text Summarization with Deep Learning: A
Comprehensive Review [2.4185510826808487]
ディープラーニングは、言語データの複雑な表現を学習できるモデルの開発を可能にすることによって、自然言語処理(NLP)に革命をもたらした。
NLPのディープラーニングモデルは、通常、大量のデータを使用してディープニューラルネットワークをトレーニングし、言語データ内のパターンと関係を学習する。
テキスト要約にディープラーニングを適用することは、テキスト要約タスクを実行するためにディープニューラルネットワークを使用することを指す。
論文 参考訳(メタデータ) (2023-10-13T21:24:37Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
ディープラーニングは自然言語処理(NLP)分野において主要な技術である。
ディープラーニングには多くのラベル付きデータが必要です。
メタ学習は、より良いアルゴリズムを学ぶためのアプローチを研究する機械学習の分野である。
論文 参考訳(メタデータ) (2022-05-03T13:58:38Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
言語間NERは、知識をリッチリソース言語から低リソース言語に転送する。
既存の言語間NERメソッドは、ターゲット言語でリッチなラベル付けされていないデータをうまく利用しない。
半教師付き学習と強化学習のアイデアに基づく新しいアプローチを開発する。
論文 参考訳(メタデータ) (2021-06-01T05:46:22Z) - FedNLP: A Research Platform for Federated Learning in Natural Language
Processing [55.01246123092445]
NLPのフェデレーションラーニングのための研究プラットフォームであるFedNLPを紹介します。
FedNLPは、テキスト分類、シーケンスタグ付け、質問応答、Seq2seq生成、言語モデリングなど、NLPで一般的なタスクの定式化をサポートしている。
FedNLPによる予備実験では、分散型データセットと集中型データセットの学習には大きなパフォーマンスギャップが存在することが明らかになった。
論文 参考訳(メタデータ) (2021-04-18T11:04:49Z) - A Survey on Recent Approaches for Natural Language Processing in
Low-Resource Scenarios [30.391291221959545]
ディープニューラルネットワークと巨大な言語モデルが、自然言語アプリケーションにおいて一様化しつつある。
大量のトレーニングデータを必要とすることで知られているため、低リソース環境でのパフォーマンスを改善するための作業が増えている。
ニューラルモデルに対する最近の根本的な変化と、一般的なプレトレインおよびファインチューンパラダイムにより、低リソースの自然言語処理に対する有望なアプローチを調査した。
論文 参考訳(メタデータ) (2020-10-23T11:22:01Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。