Continual Learning with Neuron Activation Importance
- URL: http://arxiv.org/abs/2107.12657v1
- Date: Tue, 27 Jul 2021 08:09:32 GMT
- Title: Continual Learning with Neuron Activation Importance
- Authors: Sohee Kim, Seungkyu Lee
- Abstract summary: Continual learning is a concept of online learning with multiple sequential tasks.
One of the critical barriers of continual learning is that a network should learn a new task keeping the knowledge of old tasks without access to any data of the old tasks.
We propose a neuron activation importance-based regularization method for stable continual learning regardless of the order of tasks.
- Score: 1.7513645771137178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning is a concept of online learning with multiple sequential
tasks. One of the critical barriers of continual learning is that a network
should learn a new task keeping the knowledge of old tasks without access to
any data of the old tasks. In this paper, we propose a neuron activation
importance-based regularization method for stable continual learning regardless
of the order of tasks. We conduct comprehensive experiments on existing
benchmark data sets to evaluate not just the stability and plasticity of our
method with improved classification accuracy also the robustness of the
performance along the changes of task order.
Related papers
- Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Online Continual Learning via the Knowledge Invariant and Spread-out
Properties [4.109784267309124]
Key challenge in continual learning is catastrophic forgetting.
We propose a new method, named Online Continual Learning via the Knowledge Invariant and Spread-out Properties (OCLKISP)
We empirically evaluate our proposed method on four popular benchmarks for continual learning: Split CIFAR 100, Split SVHN, Split CUB200 and Split Tiny-Image-Net.
arXiv Detail & Related papers (2023-02-02T04:03:38Z) - Beyond Not-Forgetting: Continual Learning with Backward Knowledge
Transfer [39.99577526417276]
In continual learning (CL) an agent can improve the learning performance of both a new task and old' tasks.
Most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks.
We propose a new CL method with Backward knowlEdge tRansfer (CUBER) for a fixed capacity neural network without data replay.
arXiv Detail & Related papers (2022-11-01T23:55:51Z) - Continual Prompt Tuning for Dialog State Tracking [58.66412648276873]
A desirable dialog system should be able to continually learn new skills without forgetting old ones.
We present Continual Prompt Tuning, a parameter-efficient framework that not only avoids forgetting but also enables knowledge transfer between tasks.
arXiv Detail & Related papers (2022-03-13T13:22:41Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
We propose Experience Continual Replay (ERR), a bi-level learning framework to adaptively tune task-wise to achieve a better stability plasticity' tradeoff.
ERR can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T12:05:22Z) - AFEC: Active Forgetting of Negative Transfer in Continual Learning [37.03139674884091]
We show that biological neural networks can actively forget the old knowledge that conflicts with the learning of a new experience.
Inspired by the biological active forgetting, we propose to actively forget the old knowledge that limits the learning of new tasks to benefit continual learning.
arXiv Detail & Related papers (2021-10-23T10:03:19Z) - Center Loss Regularization for Continual Learning [0.0]
In general, neural networks lack the ability to learn different tasks sequentially.
Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks.
We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
arXiv Detail & Related papers (2021-10-21T17:46:44Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
"Online" continual learning enables evaluating both information retention and online learning efficacy.
In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online.
We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts.
arXiv Detail & Related papers (2021-08-20T06:17:20Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z) - Understanding the Role of Training Regimes in Continual Learning [51.32945003239048]
Catastrophic forgetting affects the training of neural networks, limiting their ability to learn multiple tasks sequentially.
We study the effect of dropout, learning rate decay, and batch size, on forming training regimes that widen the tasks' local minima.
arXiv Detail & Related papers (2020-06-12T06:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.