論文の概要: Source-Agnostic Gravitational-Wave Detection with Recurrent Autoencoders
- arxiv url: http://arxiv.org/abs/2107.12698v1
- Date: Tue, 27 Jul 2021 09:56:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-28 14:26:13.684340
- Title: Source-Agnostic Gravitational-Wave Detection with Recurrent Autoencoders
- Title(参考訳): リカレントオートエンコーダを用いた震源非依存重力波検出
- Authors: Eric A. Moreno and Jean-Roch Vlimant and Maria Spiropulu and
Bartlomiej Borzyszkowski and Maurizio Pierini
- Abstract要約: 本稿では, レーザ干渉計における重力波信号検出問題に対する, ディープリカレントオートエンコーダに基づく異常検出手法の適用について述べる。
ノイズデータに基づいて訓練されたこのアルゴリズムは、特定の種類のソースを標的にすることなく、教師なしの戦略を用いて信号を検出することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an application of anomaly detection techniques based on deep
recurrent autoencoders to the problem of detecting gravitational wave signals
in laser interferometers. Trained on noise data, this class of algorithms could
detect signals using an unsupervised strategy, i.e., without targeting a
specific kind of source. We develop a custom architecture to analyze the data
from two interferometers. We compare the obtained performance to that obtained
with other autoencoder architectures and with a convolutional classifier. The
unsupervised nature of the proposed strategy comes with a cost in terms of
accuracy, when compared to more traditional supervised techniques. On the other
hand, there is a qualitative gain in generalizing the experimental sensitivity
beyond the ensemble of pre-computed signal templates. The recurrent autoencoder
outperforms other autoencoders based on different architectures. The class of
recurrent autoencoders presented in this paper could complement the search
strategy employed for gravitational wave detection and extend the reach of the
ongoing detection campaigns.
- Abstract(参考訳): 本稿では,レーザー干渉計における重力波信号検出問題に対するディープリカレントオートエンコーダに基づく異常検出手法の応用について述べる。
ノイズデータに基づいて訓練されたこのアルゴリズムは、教師なし戦略、すなわち特定の種類のソースを標的にすることなく信号を検出することができる。
2つの干渉計からデータを分析するカスタムアーキテクチャを開発した。
得られた性能を他のオートエンコーダアーキテクチャや畳み込み分類器と比較した。
提案手法の教師なしの性質は、従来の監督手法と比較して精度の点でコストがかかる。
一方、事前計算された信号テンプレートのアンサンブルを超えて実験感度を一般化する定性的なゲインが存在する。
リカレントオートエンコーダは、異なるアーキテクチャに基づいて他のオートエンコーダより優れている。
本論文で提示された再帰的オートエンコーダのクラスは、重力波検出に使用される探索戦略を補完し、現在進行中の検出キャンペーンの範囲を広げることができる。
関連論文リスト
- An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
異常検出は、産業制御システムの安全かつ信頼性の高い運用に不可欠である。
本稿では,このニーズを満たすための新しい深層生成モデルを提案する。
論文 参考訳(メタデータ) (2024-05-03T23:58:27Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
電力網における異常検出は、電力系統に対するサイバー攻撃による異常を検出し、識別することを目的としている。
本稿では,複数のエンコーダとデコーダを用いて正規サンプルのデータ分布をモデル化し,新しい異常検出手法を提案する。
ネットワーク侵入と電力系統データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-11T15:49:29Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
異常検出は、正常なデータの分布に適合しないサンプルを特定することである。
本研究では,2つの競合するコンポーネント,Adversarial Distorter と Autoencoder で構成される対角的フレームワークを設計した。
提案手法は,画像およびビデオデータセットの異常検出において,既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-03T19:32:00Z) - Representation Learning for Content-Sensitive Anomaly Detection in
Industrial Networks [0.0]
本論文では、生のネットワークトラフィックの時空間的側面を教師なしかつプロトコルに依存しない方法で学習する枠組みを提案する。
学習された表現は、その後の異常検出の結果に与える影響を測定するために使用される。
論文 参考訳(メタデータ) (2022-04-20T09:22:41Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Automatic Feature Extraction for Heartbeat Anomaly Detection [7.054093620465401]
医療における異常検出の応用を目的とした、生音声の心拍音の自動抽出に着目する。
1次元非コーダ畳み込みエンコーダとウェーブネットデコーダで構成したオートエンコーダの助けを借りて,特徴を学習する。
論文 参考訳(メタデータ) (2021-02-24T13:55:24Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - Detection of gravitational-wave signals from binary neutron star mergers
using machine learning [52.77024349608834]
本稿では,重力波検出器の時系列ひずみデータを用いたニューラルネットワークに基づく機械学習アルゴリズムを提案する。
信号対雑音比が25未満の信号に対する感度は6因子改善した。
保守的な推定は、我々のアルゴリズムが信号の到着からアラート発生までの平均10.2秒の遅延を発生させることを示している。
論文 参考訳(メタデータ) (2020-06-02T10:20:11Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。