論文の概要: Initial Foundation for Predicting Individual Earthquake's Location and
Magnitude by Using Glass-Box Physics Rule Learner
- arxiv url: http://arxiv.org/abs/2107.12915v1
- Date: Tue, 27 Jul 2021 16:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-28 14:29:25.982572
- Title: Initial Foundation for Predicting Individual Earthquake's Location and
Magnitude by Using Glass-Box Physics Rule Learner
- Title(参考訳): ガラス箱物理則学習器を用いた地震の位置・大きさ予測のための初期基礎
- Authors: In Ho Cho
- Abstract要約: 特定の時間と位置で差し迫った個々の地震を予測することは、長年の謎のままである。
この研究は、観測されたデータは、新しいガラス箱の枠組みによってもたらされる可能性のある隠された規則を隠蔽する、という仮説を立てた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Although researchers accumulated knowledge about seismogenesis and
decades-long earthquake data, predicting imminent individual earthquakes at a
specific time and location remains a long-standing enigma. This study
hypothesizes that the observed data conceal the hidden rules which may be
unraveled by a novel glass-box (as opposed to black-box) physics rule learner
(GPRL) framework. Without any predefined earthquake-related mechanisms or
statistical laws, GPRL's two essentials, convolved information index and
transparent link function, seek generic expressions of rules directly from
data. GPRL's training with 10-years data appears to identify plausible rules,
suggesting a combination of the pseudo power and the pseudo vorticity of
released energy in the lithosphere. Independent feasibility test supports the
promising role of the unraveled rules in predicting earthquakes' magnitudes and
their specific locations. The identified rules and GPRL are in their infancy
requiring substantial improvement. Still, this study hints at the existence of
the data-guided hidden pathway to imminent individual earthquake prediction.
- Abstract(参考訳): 研究者たちは地震発生と地震データに関する知識を蓄積したが、特定の時間と場所における差し迫った個々の地震を予測することは長年の謎のままである。
この研究は、観測されたデータが(ブラックボックスの)新しい物理ルール学習器(gprl)フレームワークによって解かれる可能性のある隠れたルールを隠すことを仮定している。
事前定義された地震関連メカニズムや統計法則がなければ、GPRLの2つの必須事項である情報インデックスと透明リンク関数は、データから直接規則の一般的な表現を求める。
GPRLの10年のデータによるトレーニングは、可算的な規則を識別し、リソスフェア内の放出エネルギーの擬似力と擬似渦の組合せを示唆している。
独立実現可能性試験は、地震の規模とその特定の位置を予測するための未発見の規則の有望な役割を支持する。
特定されたルールとGPRLは、その初期段階でかなりの改善を必要としている。
しかし,本研究は地震予知のためのデータ誘導型隠れ経路の存在を示唆する。
関連論文リスト
- Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - EarthquakeNPP: Benchmark Datasets for Earthquake Forecasting with Neural Point Processes [0.0]
我々は,NPPの地震データに対するテストを容易にするベンチマークデータセットの集合であるSmassNPPを紹介する。
データセットは1971年から2021年までのカリフォルニアの小さな、あるいは大きなターゲット領域をカバーする。
ベンチマーク実験では,3つの分割時間NPPをETASと比較し,空間的,時間的ログ的いずれにおいてもETASよりも優れていないことを確認した。
論文 参考訳(メタデータ) (2024-09-27T16:06:17Z) - Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling [43.056135090637646]
地盤運動の条件生成モデル(CGM-GM)
本研究では, 高周波・空間連続地震動波形を合成する人工知能シミュレータを提案する。
CGM-GMは、最先端の非エルゴディックな地上運動モデルよりも優れた可能性を示す。
論文 参考訳(メタデータ) (2024-07-21T08:23:37Z) - Implicit Bias of Policy Gradient in Linear Quadratic Control: Extrapolation to Unseen Initial States [52.56827348431552]
勾配降下はしばしば暗黙のバイアスを示し、目に見えないデータに優れたパフォーマンスをもたらす。
本稿では,初期状態に対する外挿の観点から,政策勾配の暗黙バイアスを理論的に検討する。
論文 参考訳(メタデータ) (2024-02-12T18:41:31Z) - Data-Driven Prediction of Seismic Intensity Distributions Featuring
Hybrid Classification-Regression Models [21.327960186900885]
本研究では, 地震パラメータに基づいて地震強度分布を予測できる線形回帰モデルを開発した。
このデータセットは、1997年から2020年にかけて日本近海で発生した地震の震度データからなる。
提案モデルでは, 従来のGMPEにおける課題として, 異常な震度分布を予測できる。
論文 参考訳(メタデータ) (2024-02-03T13:39:22Z) - Generalized Neural Networks for Real-Time Earthquake Early Warning [22.53592578343506]
我々は,任意の局分布を持つ任意の場所で発生した地震をニューラルネットワークトレーニングのために,データ組換え法を用いて生成する。
訓練されたモデルは、地震検出とパラメータ評価のための異なる監視装置を備えた様々な地域に適用することができる。
我々のモデルは、最初のトリガーステーションから4秒以内に地震の位置とマグニチュードを確実に報告し、平均誤差は2.6-6.3 kmと0.05-0.17である。
論文 参考訳(メタデータ) (2023-12-23T10:45:21Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Spatial-Temporal Hypergraph Self-Supervised Learning for Crime
Prediction [60.508960752148454]
本研究では,犯罪予測におけるラベル不足問題に対処する空間的ハイパーグラフ自己監視学習フレームワークを提案する。
都市空間全体における犯罪の地域的依存性をエンコードするクロスリージョンハイパーグラフ構造学習を提案する。
また,2段階の自己指導型学習パラダイムを設計し,局所的・世界的空間的犯罪パターンを共同で捉えるだけでなく,地域的自己差別の強化による疎犯罪表現を補う。
論文 参考訳(メタデータ) (2022-04-18T23:46:01Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
クラスタ因果図(略してC-DAG)と呼ばれる新しいタイプのグラフィカルモデルを導入する。
C-DAGは、限定された事前知識に基づいて変数間の関係を部分的に定義することができる。
我々はC-DAGに対する因果推論のための基礎と機械を開発する。
論文 参考訳(メタデータ) (2022-02-22T21:27:31Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z) - Towards advancing the earthquake forecasting by machine learning of
satellite data [22.87513332935679]
本研究では,6マグニチュード以上の1,371地震の衛星データに基づく短期予測を行うための新しい機械学習手法であるInverse Boosting Pruning Trees(IBPT)を開発した。
提案手法は,選択された6つのベースラインを上回り,異なる地震データベースの地震予測の可能性を向上する強力な能力を示す。
論文 参考訳(メタデータ) (2021-01-31T02:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。