論文の概要: Causal Representation Learning in Temporal Data via Single-Parent Decoding
- arxiv url: http://arxiv.org/abs/2410.07013v1
- Date: Wed, 9 Oct 2024 15:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 23:07:19.407456
- Title: Causal Representation Learning in Temporal Data via Single-Parent Decoding
- Title(参考訳): 単一領域デコーディングによる時間データの因果表現学習
- Authors: Philippe Brouillard, Sébastien Lachapelle, Julia Kaltenborn, Yaniv Gurwicz, Dhanya Sridhar, Alexandre Drouin, Peer Nowack, Jakob Runge, David Rolnick,
- Abstract要約: 科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
- 参考スコア(独自算出の注目度): 66.34294989334728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific research often seeks to understand the causal structure underlying high-level variables in a system. For example, climate scientists study how phenomena, such as El Ni\~no, affect other climate processes at remote locations across the globe. However, scientists typically collect low-level measurements, such as geographically distributed temperature readings. From these, one needs to learn both a mapping to causally-relevant latent variables, such as a high-level representation of the El Ni\~no phenomenon and other processes, as well as the causal model over them. The challenge is that this task, called causal representation learning, is highly underdetermined from observational data alone, requiring other constraints during learning to resolve the indeterminacies. In this work, we consider a temporal model with a sparsity assumption, namely single-parent decoding: each observed low-level variable is only affected by a single latent variable. Such an assumption is reasonable in many scientific applications that require finding groups of low-level variables, such as extracting regions from geographically gridded measurement data in climate research or capturing brain regions from neural activity data. We demonstrate the identifiability of the resulting model and propose a differentiable method, Causal Discovery with Single-parent Decoding (CDSD), that simultaneously learns the underlying latents and a causal graph over them. We assess the validity of our theoretical results using simulated data and showcase the practical validity of our method in an application to real-world data from the climate science field.
- Abstract(参考訳): 科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
例えば、気候科学者はエルニーニョーノのような現象が、地球上の遠隔地にある他の気候プロセスにどのように影響するかを研究する。
しかし、科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
これらのことから、エルニ・ノ現象やその他の過程の高レベルな表現のような因果関係の潜伏変数への写像とそれらの上の因果モデルの両方を学ぶ必要がある。
課題は、因果表現学習と呼ばれるこのタスクが、観測データのみから非常に過小評価されており、不確定性を解決するために学習中に他の制約を必要とすることである。
本研究では,各観測された低レベル変数は1つの潜伏変数にのみ影響される,という空間的仮定を持つ時間モデルについて考察する。
このような仮定は、気候研究における地理的に格子化された測定データから領域を抽出したり、神経活動データから脳領域を捉えるなど、低レベルの変数のグループを見つける必要がある多くの科学的応用において妥当である。
本稿では,本モデルの有効性を実証し,基礎となる潜伏者と因果グラフを同時に学習する,CDSD(Causal Discovery with Single-parent Decoding)という微分可能な手法を提案する。
シミュレーションデータを用いて理論結果の有効性を評価し,気候科学分野における実世界データへの適用において,本手法の実用的妥当性を示す。
関連論文リスト
- Hypothesizing Missing Causal Variables with LLMs [55.28678224020973]
我々は、入力が欠落変数を持つ部分因果グラフであるような新しいタスクを定式化し、出力は部分グラフを完成させるための欠落変数に関する仮説である。
原因と効果の間の媒介変数を仮説化するLLMの強い能力を示す。
また,オープンソースモデルの一部がGPT-4モデルより優れているという驚くべき結果も得られた。
論文 参考訳(メタデータ) (2024-09-04T10:37:44Z) - Smoke and Mirrors in Causal Downstream Tasks [59.90654397037007]
本稿では, 治療効果推定の因果推論タスクについて検討し, 高次元観察において利害関係が記録されている。
最先端の視覚バックボーンから微調整した6つの480モデルを比較し、サンプリングとモデリングの選択が因果推定の精度に大きく影響することを発見した。
以上の結果から,今後のベンチマークでは,下流の科学的問題,特に因果的な問題について慎重に検討すべきであることが示唆された。
論文 参考訳(メタデータ) (2024-05-27T13:26:34Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Marrying Causal Representation Learning with Dynamical Systems for Science [20.370707645572676]
因果表現学習は、生の絡み合った測定から隠れた因果変数に因果モデルを拡張することを約束する。
本稿では,2つの仮定とそれらの重要な仮定との間に明確な関係を描いている。
我々は、より下流のタスクに対して、軌跡固有のパラメータを分離する制御可能なモデルを明示的に学習する。
論文 参考訳(メタデータ) (2024-05-22T18:00:41Z) - Learning Causal Representations from General Environments:
Identifiability and Intrinsic Ambiguity [27.630223763160515]
一般的な環境から得られたデータに基づいて,最初の識別可能性を示す。
線形因果モデルでは、因果グラフは完全復元可能であるが、潜伏変数は閉ノード曖昧性(SNA)までしか識別できないことを示す。
また,SNAまでの地下構造モデルを確実に復元するアルゴリズムである texttLiNGCReL を提案する。
論文 参考訳(メタデータ) (2023-11-21T01:09:11Z) - Multi-variable Hard Physical Constraints for Climate Model Downscaling [17.402215838651557]
地球温暖化モデル(GCM)は、気候変動の進化をシミュレートし、気候変動の影響を評価する主要なツールである。
彼らはしばしば、局所的な現象を再現する際の精度を制限する粗い空間分解能で操作する。
本研究は, この問題の範囲を調査し, 温度適用を通じて多変量制約を導入したフレームワークの基礎を定めている。
論文 参考訳(メタデータ) (2023-08-02T11:42:02Z) - Evaluating Loss Functions and Learning Data Pre-Processing for Climate
Downscaling Deep Learning Models [0.0]
気候下降の文脈における深層学習モデルに対する損失関数と非線形データ前処理法の効果について検討した。
その結果,L1の損失やL2の損失は,降水データのような不均衡なデータではL1の損失よりも有意に優れていることがわかった。
論文 参考訳(メタデータ) (2023-06-19T19:58:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Climate Intervention Analysis using AI Model Guided by Statistical
Physics Principles [6.824166358727082]
変動散逸理論(FDT)として知られる統計物理学の原理を応用した新しい解法を提案する。
利用することで,地球系モデルによって生成された大規模なデータセットに符号化された情報を抽出することができる。
我々のモデルであるAiBEDOは、地球および地域表面の気候に対する放射摂動の複雑なマルチタイム効果を捉えることができる。
論文 参考訳(メタデータ) (2023-02-07T05:09:10Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。