Practical quantum multiparty signatures using quantum-key-distribution
networks
- URL: http://arxiv.org/abs/2107.12974v2
- Date: Tue, 18 Jan 2022 13:53:20 GMT
- Title: Practical quantum multiparty signatures using quantum-key-distribution
networks
- Authors: E.O. Kiktenko, A.S. Zelenetsky, A.K. Fedorov
- Abstract summary: We develop an unconditionally secure signature scheme that guarantees authenticity and transferability of arbitrary length messages in a quantum key distribution network.
We provide a comprehensive security analysis of the developed scheme, perform an optimization of the scheme parameters with respect to the secret key consumption, and demonstrate that the developed scheme is compatible with the capabilities of currently available QKD devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital signatures are widely used for providing security of communications.
At the same time, the security of currently deployed digital signature
protocols is based on unproven computational assumptions. An efficient way to
ensure an unconditional (information-theoretic) security of communication is to
use quantum key distribution (QKD), whose security is based on laws of quantum
mechanics. In this work, we develop an unconditionally secure signature scheme
that guarantees authenticity and transferability of arbitrary length messages
in a QKD network. In the proposed setup, the QKD network consists of two
subnetworks: (i) an internal network that includes the signer and with
limitation on the number of malicious nodes and (ii) an external network that
has no assumptions on the number of malicious nodes. A consequence of the
absence of the trust assumption in the external subnetwork is the necessity of
assistance from internal subnetwork recipients for the verification of
message-signature pairs by external subnetwork recipients. We provide a
comprehensive security analysis of the developed scheme, perform an
optimization of the scheme parameters with respect to the secret key
consumption, and demonstrate that the developed scheme is compatible with the
capabilities of currently available QKD devices.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Measurement-Device-Independent Quantum Secret Sharing Networks with Linear Bell-State Analysis [7.497434328497198]
Quantum secret sharing (QSS) plays a pivotal role in multiparty quantum communication.
However, the security of QSS schemes can be compromised by attacks exploiting imperfections in measurement devices.
Here, we propose a reconfigurable approach to implement QSS based on measurement-device-independent (MDI) principles.
arXiv Detail & Related papers (2024-10-31T01:59:09Z) - Physical Layer Deception with Non-Orthogonal Multiplexing [52.11755709248891]
We propose a novel framework of physical layer deception (PLD) to actively counteract wiretapping attempts.
PLD combines PLS with deception technologies to actively counteract wiretapping attempts.
We prove the validity of the PLD framework with in-depth analyses and demonstrate its superiority over conventional PLS approaches.
arXiv Detail & Related papers (2024-06-30T16:17:39Z) - Quantum Secure Anonymous Communication Networks [2.588445811817417]
We propose a quantum-resistant alternative to RSA and Diffie-Hellman for distributing symmetric keys, namely, quantum key distribution (QKD)
We develop a protocol and network architecture that integrates QKD without the need for trusted nodes, thus meeting the requirements of the Tor network.
arXiv Detail & Related papers (2024-05-09T22:05:45Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Distributed Information-theoretical Secure Protocols for Quantum Key
Distribution Networks against Malicious Nodes [15.200383830307915]
Quantum key distribution (QKD) networks are expected to enable information-theoretical secure (ITS) communication over a large-scale network.
Current research on QKD networks primarily addresses passive attacks conducted by malicious nodes such as eavesdropping.
We suggest a novel paradigm, inspired by distributed systems, to address the active attack by collaborate malicious nodes in QKD networks.
arXiv Detail & Related papers (2023-02-14T11:53:22Z) - Authentication of quantum key distribution with post-quantum
cryptography and replay attacks [1.8476815769956565]
Quantum key distribution (QKD) and post-quantum cryptography (PQC) are two cryptographic mechanisms with quantum-resistant security.
We propose two protocols based on PQC to realize the full authentication of QKD data post-processing.
arXiv Detail & Related papers (2022-06-02T17:29:34Z) - Sharing classical secrets with continuous-variable entanglement:
Composable security and network coding advantage [0.913755431537592]
We show that multi-partite entangled resources achieve a genuine advantage over point-to-point protocols for quantum communication.
This is the first concrete compelling examples of multi-partite entangled resources achieving a genuine advantage over point-to-point protocols for quantum communication.
arXiv Detail & Related papers (2021-04-21T17:37:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.