Perspective on traveling wave microwave parametric amplifiers
- URL: http://arxiv.org/abs/2107.13033v5
- Date: Wed, 22 Sep 2021 14:27:02 GMT
- Title: Perspective on traveling wave microwave parametric amplifiers
- Authors: Martina Esposito, Arpit Ranadive, Luca Planat, Nicolas Roch
- Abstract summary: We focus on traveling wave parametric amplifiers (TWPAs), underlining the key achievements of the last years and the present open challenges.
We discuss possible new research directions beyond amplification such as exploring these devices as a platform for multi-mode entanglement generation and for the development of single photon detectors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum-limited microwave parametric amplifiers are genuine key pillars for
rising quantum technologies and in general for applications that rely on the
successful readout of weak microwave signals by adding only the minimum amount
of noise allowed by quantum mechanics. In this perspective, after providing a
brief overview on the different families of parametric microwave amplifiers, we
focus on traveling wave parametric amplifiers (TWPAs), underlining the key
achievements of the last years and the present open challenges. We discuss also
possible new research directions beyond amplification such as exploring these
devices as a platform for multi-mode entanglement generation and for the
development of single photon detectors.
Related papers
- In-operando microwave scattering-parameter calibrated measurement of a Josephson travelling wave parametric amplifier [0.0]
Superconducting travelling wave parametric amplifiers (TWPAs) are broadband near-quantum limited microwave amplifiers commonly used for qubit readout.
We apply a microwave calibration technique to extract the S- parameters of a Josephson junction based TWPA in-operando.
arXiv Detail & Related papers (2024-06-05T08:46:41Z) - Broadband parametric amplification in DARTWARS [64.98268713737]
Traveling-Wave Parametric Amplifiers (TWPAs) may be especially suitable for practical applications due to their multi-Gigahertz amplification bandwidth.
The DARTWARS project aims to develop a KITWPA capable of achieving $20,$ dB of amplification.
The measurements revealed an average amplification of approximately $9,$dB across a $2,$GHz bandwidth for a KITWPA spanning $17,$mm in length.
arXiv Detail & Related papers (2024-02-19T10:57:37Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Broadband Squeezed Microwaves and Amplification with a Josephson
Traveling-Wave Parametric Amplifier [0.8527063867655793]
Squeezing of the electromagnetic vacuum is an essential metrological technique used to reduce quantum noise in applications spanning gravitational wave detection, biological microscopy, and quantum information science.
We develop a dual-pump, broadband Josephson traveling-wave parametric amplifier that combines a phase-sensitive extinction ratio of 56 dB with single-mode squeezing on par with the best resonator-based squeezers.
Our amplifier is capable of simultaneously creating entangled microwave photon pairs with large frequency separation, with potential applications including high-fidelity qubit readout, quantum illumination and teleportation.
arXiv Detail & Related papers (2022-01-27T01:31:32Z) - Microwave Quantum Radar using a Josephson Traveling Wave Parametric
Amplifier [3.150310177478277]
A microwave quantum radar setup based on quantum illumination protocol and using a Josephson Traveling Wave Parametric Amplifier (JTWPA) is proposed.
Measurement results of the developed JTWPA, pumped at 12 GHz, show an ultrawide bandwidth equal to 10 GHz at X-band making our MQR a promising candidate for the detection of stealth objects.
arXiv Detail & Related papers (2021-11-05T11:30:32Z) - Detector Array Readout with Traveling Wave Amplifiers [0.0]
Noise at the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures.
The DARTWARS project has the goal of developing high-performing innovative traveling wave parametric amplifiers.
arXiv Detail & Related papers (2021-11-02T11:33:17Z) - Microwave Quantum Illumination via Cavity Magnonics [7.251898115709377]
We propose a hybrid quantum source based on cavity magnonics for microwave QI.
Within experimentally accessible parameters, significant microwave-optical quantum resources of interest can be generated.
arXiv Detail & Related papers (2020-11-09T10:20:08Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal Gate Set for Continuous-Variable Quantum Computation with
Microwave Circuits [101.18253437732933]
We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits.
As an application, we show that this architecture allows for the generation of a cubic phase state with an experimentally feasible procedure.
arXiv Detail & Related papers (2020-02-04T16:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.