Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing
- URL: http://arxiv.org/abs/2409.14501v2
- Date: Sat, 18 Jan 2025 08:50:44 GMT
- Title: Rydberg Atomic Quantum Receivers for Classical Wireless Communication and Sensing
- Authors: Tierui Gong, Aveek Chandra, Chau Yuen, Yong Liang Guan, Rainer Dumke, Chong Meng Samson See, Mérouane Debbah, Lajos Hanzo,
- Abstract summary: Rydberg atomic quantum receivers (RAQR) are emerging quantum precision sensing platforms designed for receiving radio frequency (RF) signals.
RAQRs realize RF-to-optical conversions based on light-atom interactions.
Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing.
- Score: 71.94873601156017
- License:
- Abstract: The Rydberg atomic quantum receivers (RAQR) are emerging quantum precision sensing platforms designed for receiving radio frequency (RF) signals. It relies on creation of Rydberg atoms from normal atoms by exciting one or more electrons to a very high energy level, thereby making the atom sensitive to RF signals. RAQRs realize RF-to-optical conversions based on light-atom interactions relying on the so called electromagnetically induced transparency (EIT) and Aulter-Townes splitting (ATS), so that the desired RF signal can be read out optically. The large dipole moments of Rydberg atoms associated with rich choices of Rydberg states and various modulation schemes facilitate an ultra-high sensitivity ($\sim$ nV/cm/$\sqrt{\text{Hz}}$) and an ultra-broadband tunability (direct-current to Terahertz). RAQRs also exhibit compelling scalability and lend themselves to the construction of innovative, compact receivers. Initial experimental studies have demonstrated their capabilities in classical wireless communications and sensing. To fully harness their potential in a wide variety of applications, we commence by outlining the underlying fundamentals of Rydberg atoms, followed by the principles and schemes of RAQRs. Then, we overview the state-of-the-art studies from both physics and communication societies. Furthermore, we conceive Rydberg atomic quantum single-input single-output (RAQ-SISO) and multiple-input multiple-output (RAQ-MIMO) schemes for facilitating the integration of RAQRs with classical wireless systems. Finally, we conclude with a set of potent research directions.
Related papers
- Rydberg Atomic Quantum Receivers for Multi-Target DOA Estimation [77.32323151235285]
Rydberg atomic quantum receivers (RAQRs) have emerged as a promising solution to classical wireless communication and sensing.
We first conceive a Rydberg atomic quantum uniform linear array (RAQ-ULA) aided receiver for multi-target detection.
We then propose the Rydberg atomic quantum estimation of signal parameters by designing a rotational invariance based technique termed as RAQ-ESPRIT.
arXiv Detail & Related papers (2025-01-06T07:42:23Z) - Rydberg Atomic Quantum Receivers for Classical Wireless Communications and Sensing: Their Models and Performance [78.76421728334013]
Rydberg atomic quantum receivers (RAQRs) are an eminent solution for detecting the electric field of radio frequency (RF) signals.
We introduce the superheterodyne version of RAQRs to the wireless community by presenting an end-to-end reception scheme.
We then develop a corresponding equivalent baseband signal model relying on a realistic reception flow.
arXiv Detail & Related papers (2024-12-07T06:25:54Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - A warm Rydberg atom-based quadrature amplitude-modulated receiver [0.9636431845459937]
Rydberg atoms exhibit remarkable sensitivity to electromagnetic fields, making them promising candidates for field sensors.
We propose a protocol for signal reception near the 2.4 GHz Wi-Fi frequency band, harnessing the capabilities of warm Rydberg atoms.
arXiv Detail & Related papers (2024-05-05T11:38:41Z) - Deep Learning for Low-Latency, Quantum-Ready RF Sensing [2.5393702482222813]
Recent work has shown the promise of applying deep learning to enhance software processing of radio frequency (RF) signals.
In this paper, we describe our implementations of quantum-ready machine learning approaches for RF signal classification.
arXiv Detail & Related papers (2024-04-27T17:22:12Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Quantum enhanced radio detection and ranging with solid spins [10.001277862275543]
We demonstrate quantum enhanced radio detection and ranging using solid spins.
RF magnetic sensitivity is improved by three orders to 21 $pT/sqrtHz$, based on nanoscale quantum sensing and RF focusing.
Results pave the way for exploring quantum enhanced radar and communications with solid spins.
arXiv Detail & Related papers (2023-03-02T09:52:16Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.