論文の概要: Pixyz: a library for developing deep generative models
- arxiv url: http://arxiv.org/abs/2107.13109v1
- Date: Wed, 28 Jul 2021 00:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-29 13:56:05.737071
- Title: Pixyz: a library for developing deep generative models
- Title(参考訳): Pixyz: 深層生成モデルを開発するためのライブラリ
- Authors: Masahiro Suzuki, Takaaki Kaneko, Yutaka Matsuo
- Abstract要約: Pixyzと呼ばれる新しいDGMライブラリを提案する。
簡単なDGMの学習において,本ライブラリは既存の確率的モデリング言語よりも高速であることを示す。
我々のライブラリは、既存のライブラリでは扱いにくい、単純で簡潔な方法で複雑なDGMの実装に使用できることを示す。
- 参考スコア(独自算出の注目度): 17.46421362066569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the recent rapid progress in the study of deep generative models (DGMs),
there is a need for a framework that can implement them in a simple and generic
way. In this research, we focus on two features of the latest DGMs: (1) deep
neural networks are encapsulated by probability distributions and (2) models
are designed and learned based on an objective function. Taking these features
into account, we propose a new DGM library called Pixyz. We experimentally show
that our library is faster than existing probabilistic modeling languages in
learning simple DGMs and we show that our library can be used to implement
complex DGMs in a simple and concise manner, which is difficult to do with
existing libraries.
- Abstract(参考訳): 近年, 深層生成モデル (DGM) の研究が急速に進展しているため, それらをシンプルかつ汎用的に実装できるフレームワークの必要性が指摘されている。
本研究では,(1)深層ニューラルネットワークは確率分布にカプセル化され,(2)モデルは目的関数に基づいて設計・学習される,という最新のdgmの特徴に注目した。
これらの特徴を考慮すると、Pixyzと呼ばれる新しいDGMライブラリを提案する。
実験により,我々のライブラリは,単純なDGMを学習する際に既存の確率的モデリング言語よりも高速であることが示され,既存のライブラリでは難しい複雑なDGMの実装に利用できることが示されている。
関連論文リスト
- Deep Fast Machine Learning Utils: A Python Library for Streamlined Machine Learning Prototyping [0.0]
Deep Fast Machine Learning Utils (DFMLU)ライブラリは、機械学習プロセスのアスペクトを自動化および拡張するために設計されたツールを提供する。
DFMLUはモデル開発とデータ処理をサポートする機能を提供します。
この原稿はDFMLUの機能の概要を示し、各ツールにPythonの例を提供している。
論文 参考訳(メタデータ) (2024-09-14T21:39:17Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - CyNetDiff -- A Python Library for Accelerated Implementation of Network Diffusion Models [0.9831489366502302]
CyNetDiffはPythonライブラリで、Cythonで記述されている。
多くの研究課題において、これらのシミュレーションが最も計算集約的なタスクであるため、高水準言語へのインタフェースを備えたライブラリを持つことが望ましい。
論文 参考訳(メタデータ) (2024-04-25T21:59:55Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
学習検索(LSR)は、クエリとドキュメントを疎語彙ベクトルにエンコードするニューラルネットワークのファミリーである。
テキスト画像検索に焦点をあて,マルチモーダル領域へのLSRの適用について検討する。
LexLIPやSTAIRのような現在のアプローチでは、大規模なデータセットで複雑なマルチステップのトレーニングが必要です。
提案手法は, 密度ベクトルを凍結密度モデルからスパース語彙ベクトルへ効率的に変換する。
論文 参考訳(メタデータ) (2024-02-27T14:21:56Z) - Julearn: an easy-to-use library for leakage-free evaluation and
inspection of ML models [0.23301643766310373]
我々は、Julearnの設計の背景にある理論的根拠と、その中核となる特徴を提示し、以前に公表された研究プロジェクトの3つの例を示す。
Julearnは、最も一般的なMLの落とし穴に対して、ガードを組み込んだ使いやすい環境を提供することで、機械学習の世界への参入を単純化することを目指している。
論文 参考訳(メタデータ) (2023-10-19T08:21:12Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z) - DeeProb-kit: a Python Library for Deep Probabilistic Modelling [0.0]
DeeProb-kitはPythonで書かれた統一ライブラリで、DPM(Deep Probabilistic Model)のコレクションで構成されている。
効率的に実装された学習技術、推論ルーチン、統計アルゴリズム、高品質な完全ドキュメントAPIを提供する。
論文 参考訳(メタデータ) (2022-12-08T17:02:16Z) - Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
Case [0.0]
我々はPythaeについて紹介する。Pythaeは多種多様なオープンソースPythonライブラリで、生成オートエンコーダモデルの単純で再現性があり、信頼性の高い利用を提供する。
本稿では、下流タスクにおける主な改善点として、19の生成オートエンコーダモデルを紹介し、比較する。
論文 参考訳(メタデータ) (2022-06-16T17:11:41Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
非パラメトリックニューラルネットワークモデル(NLM)は、外部データストアを用いてテキストの予測分布を学習する。
比較性能を維持しながら、推論速度の最大6倍の高速化を実現する方法を示す。
論文 参考訳(メタデータ) (2021-09-09T12:32:28Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
本稿では,mipソルバの2つのキーサブタスクに学習を適用し,高品質なジョイント変数割当を生成し,その割当と最適課題との客観的値の差を限定する。
提案手法は,ニューラルネットワークに基づく2つのコンポーネントであるニューラルダイバーディングとニューラルブランチを構築し,SCIPなどのベースMIPソルバで使用する。
2つのGoogle生産データセットとMIPLIBを含む6つの現実世界データセットに対するアプローチを評価し、それぞれに別々のニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-12-23T09:33:11Z) - Captum: A unified and generic model interpretability library for PyTorch [49.72749684393332]
我々は,PyTorch用の新しい,統一されたオープンソースモデル解釈可能性ライブラリを紹介する。
このライブラリには、多くの勾配と摂動に基づく属性アルゴリズムの汎用的な実装が含まれている。
分類モデルと非分類モデルの両方に使用できる。
論文 参考訳(メタデータ) (2020-09-16T18:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。